
doi: 10.1017/wsc.2018.66
AbstractWeed interference during crop establishment is a serious concern for Florida strawberry [Fragaria×ananassa(Weston) Duchesne ex Rozier (pro sp.) [chiloensis×virginiana]] producers. In situ remote detection for precision herbicide application reduces both the risk of crop injury and herbicide inputs. Carolina geranium (Geranium carolinianumL.) is a widespread broadleaf weed within Florida strawberry production with sensitivity to clopyralid, the only available POST broadleaf herbicide.Geranium carolinianumleaf structure is distinct from that of the strawberry plant, which makes it an ideal candidate for pattern recognition in digital images via convolutional neural networks (CNNs). The study objective was to assess the precision of three CNNs in detectingG. carolinianum. Images ofG. carolinianumgrowing in competition with strawberry were gathered at four sites in Hillsborough County, FL. Three CNNs were compared, including object detection–based DetectNet, image classification–based VGGNet, and GoogLeNet. Two DetectNet networks were trained to detect either leaves or canopies ofG. carolinianum. Image classification using GoogLeNet and VGGNet was largely unsuccessful during validation with whole images (Fscore<0.02). CNN training using cropped images increasedG. carolinianumdetection during validation for VGGNet (Fscore=0.77) and GoogLeNet (Fscore=0.62). TheG. carolinianumleaf–trained DetectNet achieved the highestFscore(0.94) for plant detection during validation. Leaf-based detection led to more consistent detection ofG. carolinianumwithin the strawberry canopy and reduced recall-related errors encountered in canopy-based training. The smaller target of leaf-based DetectNet did increase false positives, but such errors can be overcome with additional training images for network desensitization training. DetectNet was the most viable CNN tested for image-based remote sensing ofG. carolinianumin competition with strawberry. Future research will identify the optimal approach for in situ detection and integrate the detection technology with a precision sprayer.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 37 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
