Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Sedimentologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Sedimentology
Article . 1989 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Early Cambrian reefs, reef complexes, and associated lithofacies of the Shackleton Limestone, Transantarctic Mountains

Authors: MARGARET N. REES; BRIAN R. PRATT; A. J. ROWELL;

Early Cambrian reefs, reef complexes, and associated lithofacies of the Shackleton Limestone, Transantarctic Mountains

Abstract

ABSTRACTThe Shackleton Limestone formed a carbonate platform that bordered part of the Greater Antarctic craton in middle and late Early Cambrian time. In the Holyoake Range of the central Transantarctic Mountains, this unit records deposition on a stable shelf on which flourished ecological reefs composed of microorganisms and archaeocyathans. Burrow‐mottled lime mudstone, wackestone and packstone with patch reefs represent accumulation in shelf areas of relatively low to moderate energy. Thick ooidal grainstone units reflect deposition in higher energy shoals and as sand sheets that were associated with extensive reef complexes.The framework of these reefs was principally the product of micro‐organisms, by inference mostly cyanobacteria. Archaeocyathans constitute as much as 30% of some reefs, but commonly they form less than 10% and are absent from some. On the basis of microbial composition, three reef types are recognized. The first type is a Renalcis boundstone that lacks archaeocyathans. Within these, abundant upward‐directed thalii of Renalcis formed a framework that trapped fine‐grained sediment. The second type, which forms the core of some larger reefs, is composed of stromatactis‐bearing, microbial boundstone. The third, yet most common, reef type is variable in composition. It is characterized by the presence of abundant Epiphyton, but may include archaeocyathans, and the microbial microfossils Girvanella and Renalcis as well as cryptomicrobial clotted micrite. In this type of reef, frame‐building organisms typically constructed highly porous structures that had small interparticle and fenestral pores and large growth‐framework cavities, as well as rare metre‐sized caverns. Within these spaces, Epiphyton and, less commonly Renalcis, encrusted framework elements, fine‐grained sediments accumulated, and pervasive sea‐floor cements were precipitated.Boundstone fabrics in the Shackleton Limestone are highly complex, with fabrics analogous to younger, more metazoan‐rich reefs, as well as deep‐water stromatactis‐bearing mud‐mounds. The Epiphyton‐Girvanella‐archaeocyathan frameworks and stromatactis‐bearing boundstones, both of which seemingly first appeared in the middle Early Cambrian, are regarded as the precursors, in structure, composition, and preferred hydrologic setting, of the more extensive reefs and complex framework styles of later Phanerozoic time.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    55
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
55
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!