Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DBLP
Conference object
Data sources: DBLP
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Revisiting exponential integrator methods for HPC with a mini-application

Authors: James Douglas Shanks; Wei Liu; Richard P. Smedley-Stevenson;

Revisiting exponential integrator methods for HPC with a mini-application

Abstract

In this work we look at employing communication avoiding techniques commonly used in Krylov methods in the context of exponential integrators for the solution of stiff partial differential equations. We choose an exponential integrator method based on polynomial approximations, as compared to those based on Krylov methods, to improve the possible strong scaling by reducing the possible all-reduce communications prevalent in iterative Krylov solvers. We implement this within the published TeaLeaf mini-app which is parallelised with MPI+OpenMP, and has an MPI+CUDA implementation. We assess the scalability of our implementations on AWE's Damson Bull Sequana X1000 system up to 1024 nodes (36,864 cores), AWE's Bullace system which has nodes with attached Nvidia V100 GPUs, and on the EPCC's Fulhame HPE Apollo 70. We find that our port of TeaLeaf using an exponential Euler method (CPEXI) scales well, in particular when configured in hybrid (MPI+OpenMP) where it achieves a parallel efficiency of 0.57 on 36,864 cores. This is better than a communication avoiding polynomially preconditioned Conjugate Gradient method (CP-PCG) which achieves 0.36 at the same core count. Our GPU experiments show an encouraging speedup and scaling, with minimal overhead.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!