Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Hal
Article . 2023
Data sources: Hal
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1103/physre...
Article . 2023 . Peer-reviewed
License: APS Licenses for Journal Article Re-use
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2022
License: CC BY
Data sources: Datacite
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Universality in the tripartite information after global quenches

Authors: Vanja Marić; Maurizio Fagotti;

Universality in the tripartite information after global quenches

Abstract

We consider macroscopically large 3-partitions $(A,B,C)$ of connected subsystems $A\cup B \cup C$ in infinite quantum spin chains and study the Rényi-$α$ tripartite information $I_3^{(α)}(A,B,C)$. At equilibrium in clean 1D systems with local Hamiltonians it generally vanishes. A notable exception is the ground state of conformal critical systems, in which $I_3^{(α)}(A,B,C)$ is known to be a universal function of the cross ratio $x=|A||C|/[(|A|+|B|)(|C|+|B|)]$, where $|A|$ denotes $A$'s length. We identify different classes of states that, under time evolution with translationally invariant Hamiltonians, locally relax to states with a nonzero (Rényi) tripartite information, which furthermore exhibits a universal dependency on $x$. We report a numerical study of $I_3^{(α)}$ in systems that are dual to free fermions, propose a field-theory description, and work out their asymptotic behaviour for $α=2$ in general and for generic $α$ in a subclass of systems. This allows us to infer the value of $I_3^{(α)}$ in the scaling limit $x\rightarrow 1^-$, which we call ``residual tripartite information''. If nonzero, our analysis points to a universal residual value $-\log 2$ independently of the Rényi index $α$, and hence applies also to the genuine (von Neumann) tripartite information.

Keywords

High Energy Physics - Theory, Quantum Physics, Statistical Mechanics (cond-mat.stat-mech), scaling, quenching, FOS: Physical sciences, chain, spin, Hamiltonian, conformal, High Energy Physics - Theory (hep-th), von Neumann, duality, ground state, [PHYS.HTHE] Physics [physics]/High Energy Physics - Theory [hep-th], universality, asymptotic behavior, Quantum Physics (quant-ph), [PHYS.COND] Physics [physics]/Condensed Matter [cond-mat], [PHYS.QPHY] Physics [physics]/Quantum Physics [quant-ph], Condensed Matter - Statistical Mechanics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
Green