
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 10261/55445
Several volatile organic compounds (VOCs) have been reported as having a communication role between plants and also between plants and animals. We aimed to test whether methanol, a short-chain oxygenated VOC, could also have a signalling role between plants. We monitored photosynthetic performance and VOC exchange rates of Quercus ilex L. saplings before and after two different treatments: (a) clipping of some leaves to simulate an attack by herbivores and (b) fumigation with gaseous methanol for 5 h to simulate the amount of methanol a plant could receive from surrounding plants if those had been already attacked by herbivores. The clipping treatment enhanced the photosynthetic rates, the chlorophyll a to b ratio and the carotenoid to chlorophyll ratio of nonclipped leaves, suggesting an activation of plant protective metabolism. Also, a small but interesting systemic (in nonclipped leaves) increase in methanol emission rates was observed, which agrees with the possibility that methanol may act as a signalling cue. The methanol fumigation treatment induced an increase in the actual photochemical efficiency of PSII and also in the carotenoid to chlorophyll ratio. Methanol fumigation also promoted a 14% increase in the monoterpene emission rate, 1 day after the treatment, a similar response to the ones induced by other signalling VOCs. The enhanced monoterpene emissions could add to the blend of VOCs emitted after stress and be part of further signalling pathways, thus forwarding the message started by methanol. This study suggests that clipping and methanol fumigation at natural concentrations elicit significant neighbour plant physiological responses and further BVOC emissions.
This study was supported by the Spanish Government grants CGL2006-04025/BOS, CGL2010-17172, and Consolider-Ingenio Montes CSD2008-00040, the CSIC grant PIF08-006-3 and the Catalan Government grant SGR 2009-458. Roger Seco gratefully acknowledges a FPI fellowship (BES-2005-6989) from MEC (Spanish Government).
10 páginas, 4 figuras.
Peer reviewed
Signal, Plant–plant communication, Methanol, Photosynthetic rates, Emission rates, Quercus ilex, Photosynthetic pigments, Monoterpenes, BVOCs
Signal, Plant–plant communication, Methanol, Photosynthetic rates, Emission rates, Quercus ilex, Photosynthetic pigments, Monoterpenes, BVOCs
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 18 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
views | 60 | |
downloads | 53 |