Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Weierstrass Institut...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied and Computational Harmonic Analysis
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied and Computational Harmonic Analysis
Article . 1999
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied and Computational Harmonic Analysis
Article . 1999 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 1999
Data sources: zbMATH Open
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://dx.doi.org/10.20347/wi...
Other literature type . 1996
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Biorthogonal Spline Wavelets on the Interval—Stability and Moment Conditions

Biorthogonal spline wavelets on the interval -- stability and moment conditions
Authors: Dahmen, Wolfgang; Kunoth, Angela; Urban, Karsten;

Biorthogonal Spline Wavelets on the Interval—Stability and Moment Conditions

Abstract

This paper is concerned with the construction of biorthogonal multiresolution analyses on [0,1] such that the corresponding wavelets realize any desired order of moment conditions throughout the interval. Our starting point is the family of biorthogonal pairs consisting of cardinal B-splines and compactly supported dual generators on ℝ developed by Cohen, Daubechies and Feauveau. In contrast to previous investigations we preserve the full degree of polynomial reproduction also for the dual multiresolution and prove in general that the corresponding modifications of dual generators near the end points of the interval still permit the biorthogonalization of the resulting bases. The subsequent construction of compactly supported biorthogonal wavelets is based on the concept of stable completions. As a first step we derive an initial decomposition of the spline spaces where the complement spaces between two successive levels are spanned by compactly supported splines which form uniformly stable bases on each level. As a second step these initial complements are then projected into the desired complements spanned by compactly supported biorthogonal wavelets. Since all generators and wavelets on the primal as well as on the dual side have finitely supported masks the corresponding decomposition and reconstruction algorithms are simple and efficient. The desired number of vanishing moments is implied by the polynomial exactness of the dual multiresolution. Again due to the polynomial exactness the primal and dual spaces satisfy corresponding Jackson estimates. In addition, Bernstein inequalities can be shown to hold for a range of Sobolev norms depending on the regularity of the primal and dual wavelets. Then it follows from general principles that the wavelets form Riesz bases for L<sub>2</sub>([0,1]) and that weighted sequence norms for the coefficients of such wavelet expansions characterize Sobolev spaces and their duals on [0,1] within a range depending on the parameters in the Jackson and Bernstein estimates.

Country
Germany
Keywords

41A17, Nontrigonometric harmonic analysis involving wavelets and other special systems, biorthogonal wavelets, 510, multiresolution analysis on the interval, 41A63, Inequalities in approximation (Bernstein, Jackson, Nikol'skiĭ-type inequalities), Multiresolution analysis on the interval -- biorthogonal wavelets -- moment conditions -- Riesz bases -- discrete Sobolev norms, multiresolution analysis on the interval -- biorthogonal wavelets -- moment conditions -- Riesz bases -- discrete Sobolev norms -- numerical stability, ddc:510, 65F35, 65N30, Applied Mathematics, article, Riesz bases, 15A12, Jackson estimates, discrete Sobolev norms, Spline approximation, numerical stability, Multiresolution analysis on the interval, Bernstein inequalities, 35Q30, moment conditions

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    174
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
174
Top 10%
Top 1%
Top 10%
Green
hybrid