Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Computati...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Computational and Applied Mathematics
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Computational and Applied Mathematics
Article . 2007
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Computational and Applied Mathematics
Article . 2007 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Jacobi–Stirling numbers, Jacobi polynomials, and the left-definite analysis of the classical Jacobi differential expression

Authors: Everitt, WN Everitt, W. N.; Kwon, KH Kwon, Kil Hyun; Littlejohn, LL Littlejohn, L. L.; Wellman, R Wellman, R.; Yoon, GJ Yoon, G. J.;

Jacobi–Stirling numbers, Jacobi polynomials, and the left-definite analysis of the classical Jacobi differential expression

Abstract

AbstractWe develop the left-definite analysis associated with the self-adjoint Jacobi operator Ak(α,β), generated from the classical second-order Jacobi differential expressionℓα,β,k[y](t)=1wα,β(t)((-(1-t)α+1(1+t)β+1y′(t))′+k(1-t)α(1+t)βy(t))(t∈(-1,1)),in the Hilbert space Lα,β2(-1,1)≔L2((-1,1);wα,β(t)), where wα,β(t)=(1-t)α(1+t)β, that has the Jacobi polynomials {Pm(α,β)}m=0∞ as eigenfunctions; here, α,β>-1 and k is a fixed, non-negative constant. More specifically, for each n∈N, we explicitly determine the unique left-definite Hilbert–Sobolev space Wn,k(α,β)(-1,1) and the corresponding unique left-definite self-adjoint operator Bn,k(α,β) in Wn,k(α,β)(-1,1) associated with the pair (Lα,β2(-1,1),Ak(α,β)). The Jacobi polynomials {Pm(α,β)}m=0∞ form a complete orthogonal set in each left-definite space Wn,k(α,β)(-1,1) and are the eigenfunctions of each Bn,k(α,β). Moreover, in this paper, we explicitly determine the domain of each Bn,k(α,β) as well as each integral power of Ak(α,β). The key to determining these spaces and operators is in finding the explicit Lagrangian symmetric form of the integral composite powers of ℓα,β,k[·]. In turn, the key to determining these powers is a double sequence of numbers which we introduce in this paper as the Jacobi–Stirling numbers. Some properties of these numbers, which in some ways behave like the classical Stirling numbers of the second kind, are established including a remarkable, and yet somewhat mysterious, identity involving these numbers and the eigenvalues of Ak(α,β).

Keywords

Spectral theorem, Jacobi–Stirling numbers, Computational Mathematics, Lagrangian symmetric, Applied Mathematics, Jacobi polynomials, Left-definite Sobolev space, Stirling numbers of the second kind, Left-definite self-adjoint operator

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    55
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
55
Top 10%
Top 10%
Average
hybrid