Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mutation Research/DN...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Mutation Research/DNA Repair
Article . 1994 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cloning of human and mouse genes homologous to RAD52, a yeast gene involved in DNA repair and recombination

Authors: Daan F.R. Muris; Olga Bezzubova; Jean-Marie Buerstedde; Kees Vreeken; A.S. Balajee; Chris J. Osgood; Christine Troelstra; +7 Authors

Cloning of human and mouse genes homologous to RAD52, a yeast gene involved in DNA repair and recombination

Abstract

The RAD52 gene of Saccharomyces cerevisiae is required for recombinational repair of double-strand breaks. Using degenerate oligonucleotides based on conserved amino acid sequences of RAD52 and rad22, its counterpart from Schizosaccharomyces pombe, RAD52 homologs from man and mouse were cloned by the polymerase chain reaction. DNA sequence analysis revealed an open reading frame of 418 amino acids for the human RAD52 homolog and of 420 amino acid residues for the mouse counterpart. The identity between the two proteins is 69% and the overall similarity 80%. The homology of the mammalian proteins with their counterparts from yeast is primarily concentrated in the N-terminal region. Low amounts of RAD52 RNA were observed in adult mouse tissues. A relatively high level of gene expression was observed in testis and thymus, suggesting that the mammalian RAD52 protein, like its homolog from yeast, plays a role in recombination. The mouse RAD52 gene is located near the tip of chromosome 6 in region G3. The human equivalent maps to region p13.3 of chromosome 12. Until now, this human chromosome has not been implicated in any of the rodent mutants with a defect in the repair of double-strand breaks.

Keywords

Recombination, Genetic, Base Sequence, DNA Repair, Genes, Fungal, Molecular Sequence Data, Chromosome Mapping, Gene Expression, Saccharomyces cerevisiae, Sequence Analysis, DNA, Rad52 DNA Repair and Recombination Protein, DNA-Binding Proteins, Fungal Proteins, Mice, Organ Specificity, Animals, Humans, Amino Acid Sequence, RNA, Messenger, Cloning, Molecular, Sequence Alignment

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    106
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
106
Top 10%
Top 1%
Top 1%
bronze