Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Publikationenserver ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Journal of Physical Chemistry C
Article . 2016 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Thermally Stimulated Luminescence and First-Principle Study of Defect Configurations in the Perovskite-Type Hydrides LiMH3:Eu2+ (M = Sr, Ba) and the Corresponding Deuterides

Authors: Stephan Kohaut; Pieter Dorenbos; Bruno Viana; Nathalie Kunkel; Nathalie Kunkel; Atul D. Sontakke;

Thermally Stimulated Luminescence and First-Principle Study of Defect Configurations in the Perovskite-Type Hydrides LiMH3:Eu2+ (M = Sr, Ba) and the Corresponding Deuterides

Abstract

Temperature-dependent photoluminescence (PL) as well as thermoluminescence (TL) were studied in the Eu2+-doped hydrides LiMH3 (M = Sr, Ba) and the corresponding deuterides. Here, thermally stimulated luminescence was observed for the first time in a Eu2+-doped hydrides and deuterides. The onset temperature of quenching (T95 %) and the quenching temperature (T50 %) were determined from photoluminescence intensities, and the energy barrier for thermal quenching was estimated. Then, a scheme with the localization of divalent and trivalent lanthanide 4f and 5d levels for the example LiSrH3 was proposed. In deuterides, the quenching temperatures are slightly higher than in hydrides, which can be related to the influence of the different phonon frequencies. In the TL measurements we observed very shallow and intense TL glow peaks in all samples. We also used density functional methods in order to show qualitative trends for the stability of possible defects. The model calculation suggest that energetically favo...

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Average
Average
Top 10%
Green