Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ New Phytologistarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
New Phytologist
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
New Phytologist
Article . 2014 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
New Phytologist
Article . 2015
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Irrepressible MONOPTEROS/ARF5 promotes de novo shoot formation

Authors: Wenzislava, Ckurshumova; Tatiana, Smirnova; Danielle, Marcos; Yara, Zayed; Thomas, Berleth;

Irrepressible MONOPTEROS/ARF5 promotes de novo shoot formation

Abstract

Summary In vitro regeneration of complete organisms from diverse cell types is a spectacular property of plant cells. Despite the great importance of plant regeneration for plant breeding and biotechnology, its molecular basis is still largely unclear and many important crop plants have remained recalcitrant to regeneration. Hormone‐exposure protocols to trigger the de novo formation of either roots or shoots from callus tissue demonstrate the importance of auxin and cytokinin signaling pathways, and genetic differences in these pathways may contribute to the highly divergent responsiveness of plant species to regeneration protocols. In this study, we show that signaling through MONOPTEROS (MP)/AUXIN RESPONSE FACTOR 5 is necessary for the formation of shoots from Arabidopsis calli. Most strikingly, an irrepressible variant of MP, MPΔ, is sufficient for promoting de novo shoot formation through pathways involving the genetically downstream functions of SHOOT MERISTEMLESS (STM) and CYTOKININ RESPONSE FACTOR2 (CRF2). We conclude that the MPΔ genotype can promote de novo shoot formation and can be used to probe corresponding signaling pathways.

Related Organizations
Keywords

Arabidopsis Proteins, Reverse Transcriptase Polymerase Chain Reaction, Stem Cells, Real-Time Polymerase Chain Reaction, DNA-Binding Proteins, Tissue Culture Techniques, Gene Expression Regulation, Plant, Mutation, Plant Shoots, Signal Transduction, Transcription Factors

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    75
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
75
Top 1%
Top 10%
Top 10%
bronze