
doi: 10.1111/nph.13014
pmid: 25274430
Summary In vitro regeneration of complete organisms from diverse cell types is a spectacular property of plant cells. Despite the great importance of plant regeneration for plant breeding and biotechnology, its molecular basis is still largely unclear and many important crop plants have remained recalcitrant to regeneration. Hormone‐exposure protocols to trigger the de novo formation of either roots or shoots from callus tissue demonstrate the importance of auxin and cytokinin signaling pathways, and genetic differences in these pathways may contribute to the highly divergent responsiveness of plant species to regeneration protocols. In this study, we show that signaling through MONOPTEROS (MP)/AUXIN RESPONSE FACTOR 5 is necessary for the formation of shoots from Arabidopsis calli. Most strikingly, an irrepressible variant of MP, MPΔ, is sufficient for promoting de novo shoot formation through pathways involving the genetically downstream functions of SHOOT MERISTEMLESS (STM) and CYTOKININ RESPONSE FACTOR2 (CRF2). We conclude that the MPΔ genotype can promote de novo shoot formation and can be used to probe corresponding signaling pathways.
Arabidopsis Proteins, Reverse Transcriptase Polymerase Chain Reaction, Stem Cells, Real-Time Polymerase Chain Reaction, DNA-Binding Proteins, Tissue Culture Techniques, Gene Expression Regulation, Plant, Mutation, Plant Shoots, Signal Transduction, Transcription Factors
Arabidopsis Proteins, Reverse Transcriptase Polymerase Chain Reaction, Stem Cells, Real-Time Polymerase Chain Reaction, DNA-Binding Proteins, Tissue Culture Techniques, Gene Expression Regulation, Plant, Mutation, Plant Shoots, Signal Transduction, Transcription Factors
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 75 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
