Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Advances in Pharmaco...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Advances in Pharmacological and Pharmaceutical Sciences
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Pharmacokinetic Evaluation of a Pectin-Based Oral Multiparticulate Matrix Carrier of Carbamazepine

Authors: Seth Kwabena Amponsah; Simon Yeboah; Kennedy Kwami Edem Kukuia; Benoit Banga N’guessan; Ofosua Adi-Dako;

A Pharmacokinetic Evaluation of a Pectin-Based Oral Multiparticulate Matrix Carrier of Carbamazepine

Abstract

Background. Carbamazepine is a drug used in the treatment of neurological disorders such as epilepsy. However, due to its erratic absorption, oral bioavailability is often poor. There is, therefore, the need to develop alternative formulations for carbamazepine with better pharmacokinetic characteristics. Aim. The aim of this study was to formulate an oral modified-release multiparticulate matrix of carbamazepine from cocoa pod husk (CPH) pectin and evaluate the pharmacokinetic profile of this formulation using in vitro and in vivo models. Methods. CPH pectin was extracted from cocoa pod husks with hot aqueous and citric acid solutions. Oral multiparticulate carbamazepine matrices were formulated from CPH pectin cross-linked with calcium. The formulation was evaluated for carbamazepine content and release profile in vitro. For in vivo pharmacokinetic profile estimation, rats were put into 4 groups of 5 animals each to receive carbamazepine multiparticulate matrix formulations A and B, carbamazepine powder, and Tegretol CR®. Animals in each group received 200 mg/kg of each drug via the oral route. Maximum plasma concentration C max , area under the concentration-time curve (AUC), elimination rate constant K e , and terminal half-life t 1 / 2 of the formulations were estimated by noncompartmental analysis. Results. The pectin extraction from fresh cocoa pod husks using hot aqueous and citric acid solutions gave pectin yields of 9.63% and 11.54%, respectively. The drug content of carbamazepine in CPH pectin formulations A and B was 95% and 96%, respectively. There was controlled and sustained release of carbamazepine for both formulations A and B in vitro. AUC0⟶36 (176.20 ± 7.97 µg.h/mL), C max (8.45 ± 0.71 μg/mL), T max (12 ± 1.28 h), and t 1 / 2 (13.75 ± 3.28 h) of formulation A showed a moderately enhanced and comparable pharmacokinetic profile to Tegretol CR® (AUC0⟶36: 155 ± 7.15 µg.h/mL, C max : 8.24 ± 0.45 μg/mL, T max : 8.0 ± 2.23 h, and t 1 / 2 : 13.51 ± 2.87 h). Conclusion. Findings from the study suggest that formulations of CPH pectin had the potential to control and maintain therapeutic concentrations of carbamazepine in circulation over a period of time in the rat model.

Related Organizations
Keywords

Therapeutics. Pharmacology, RM1-950, Research Article

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Green
gold