Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Waste Managementarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Waste Management
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The pump-mixed anaerobic digestion of pig slurry: new technology and mathematical modeling

Authors: Karol, Postawa; Jerzy, Szczygieł; Edyta, Wrzesińska-Jędrusiak; Kamila, Klimek; Marek, Kułażyński;

The pump-mixed anaerobic digestion of pig slurry: new technology and mathematical modeling

Abstract

Biogas production is a relatively novel and developing branch of the renewable fuel sector, which allows agricultural waste, and more, to be used as a feedstock. New technologies have been integrated into the process to improve its efficiency. In this study, a pump-mixed anaerobic digestion concept is considered for both experimental and modeling approaches. The experiment included a total of nine configurations with the same geometry (140 dm3 of total reactor volume) but different hydraulic retention times and mixing intervals. The measurements were used to create and optimize a mathematical model. The complete-stirring assumption, which underlies most anaerobic digestion (AD) simulations, is no longer valid in this case. Thus, the novel concept is developed by assuming that the liquid phase is split into three separate sections, which approximates the concentration gradient in a real reactor. This method allows partial differential equations to be avoided, which could potentially affect the calculation efficiency. The final mean accuracy of the model in the tested range was estimated to be 86.60% while, in selected parts of the scope, was close to 90%. The pump-mixed anaerobic digestion technique in the experiment achieved high production performance (above 8 dm3 of product per 1 dm3 of feedstock) while maintaining a high methane content (approximately 65%). The comparison between the reactor stirred by an impeller, and the pump-mixed, indicated that the proposed configuration ensures better production stability. Additionally, it was possible to achieve a higher biogas production rate with the same feedstock concentration.

Keywords

Bioreactors, Swine, Biofuels, Animals, Anaerobiosis, Models, Theoretical, Methane

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!