<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 29763872
The aim of the present study was to compare the quantity and the type of carbon (C) stored during the 14-year lifetime of a commercial nectarine orchard ecosystem fertilized with mineral or organic fertilizers. The study was carried out in the Po valley, Italy, in a nectarine orchard of the variety Stark RedGold, grafted on GF677 hybrid peach × almond. Since orchard planting in August 2001, the following treatments were applied in a randomized complete block design with four replicates per block and compared: 1. unfertilized control; 2. mineral fertilization (including P and K at planting and N applied as NO3NH4 yearly at the rate of 70-130 kg ha-1); 3. compost application at a rate of 5 Mg DW ha-1 yr-1; 4. compost application at a rate of 10 Mg DW ha-1 yr-1. Compost was obtained from domestic organic wastes mixed with pruning material from urban ornamental trees and garden management after a 3-month stabilization period. Application of compost at the highest rate increased C in the soil; the amount of C sequestered was approximately 60% from amendment source and 40% from the net primary production of trees and grasses with a net increase of C compared to mineral fertilization. Compost application was found to be a win-win strategy to increase C storage in soil and, at the same time, to promote plant growth and yield to levels similar to those obtained with mineral fertilization. The rate of C application is crucial, indicated by the fact that compost supply at the rate of 10 Mg ha-1 yr-1 was the only fertilization strategy of the ones tested that resulted in higher C sequestration. This shows that compost amendment may stimulate an increase in the net primary production of plants.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 42 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |