Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Institutional Reposi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Transportation Research Part C Emerging Technologies
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Traffic flow optimisation in presence of vehicle automation and communication systems – Part I: A first-order multi-lane model for motorway traffic

Authors: Roncoli Claudio(http://users.isc.tuc.gr/~croncoli); Roncoli Claudio(http://users.isc.tuc.gr/~croncoli); Παπαγεωργιου Μαρκος(http://users.isc.tuc.gr/~mpapageorgiou); Papageorgiou Markos(http://users.isc.tuc.gr/~mpapageorgiou); Παπαμιχαηλ Ιωαννης(http://users.isc.tuc.gr/~ipapa); Papamichail Ioannis(http://users.isc.tuc.gr/~ipapa);

Traffic flow optimisation in presence of vehicle automation and communication systems – Part I: A first-order multi-lane model for motorway traffic

Abstract

Proposed or emerging vehicle automation and communication systems (VACS) may contribute to the mitigation of motorway traffic congestion on the basis of appropriate traffic control strategies. In this context, this paper presents a novel first-order multi-lane macroscopic traffic flow model for motorways which is mainly intended for use within a related optimal control problem formulation. The model’s starting point is close to the well-known CTM (cell-transmission model), which is modified and extended to consider additional aspects of the traffic dynamics, such as lane changing and the capacity drop, via appropriate procedures for computing lateral and longitudinal flows. The model has been derived with a view to combine realistic traffic flow description with a simple (linear or piecewise linear) mathematical form, which can be exploited for efficient optimal control problem formulations, as described in a companion (Part II) paper. Although the model has been primarily derived for use in future traffic conditions including VACS, it may also be used for conventional traffic flow representation. In fact, the accuracy of the proposed modelling approach is demonstrated through calibration and validation procedures using real data from an urban motorway located in Melbourne, Australia.

Related Organizations
Keywords

VACS, Multi-lane model

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    102
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 95
    download downloads 23
  • 95
    views
    23
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
102
Top 1%
Top 10%
Top 1%
95
23
Green