<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::e7e392faf48360dbb1dc855ab74645b8&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::e7e392faf48360dbb1dc855ab74645b8&type=result"></script>');
-->
</script>
Traffic congestion is a serious threat for the economic and social life of modern societies as well as for the environment, which calls for drastic and radical solutions. The proposal puts forward an utterly original idea that leads to a novel paradigm for vehicular traffic in the era of connected and automated vehicles (CAVs) and is based on two combined principles. The first principle is lane-free traffic, which renders the driving task for CAVs smoother and safer, as risky lane-changing manoeuvres become obsolete; increases the static and dynamic capacity of the roadway due to increased road occupancy; and mitigates congestion-triggering manoeuvres. The second principle is the nudge effect, whereby vehicles may be "pushing" (from a distance, using sensors or communication) other vehicles in front of them; this allows for traffic flow to be freed from the anisotropy restriction, which stems from the fact that human driving is influenced only by downstream vehicles. The nudge effect may be implemented in various possible ways, so as to maximize the traffic flow efficiency, subject to safety and convenience constraints. TrafficFluid combines lane-free traffic with vehicle nudging to provide, for the first time since the automobile invention, the possibility to design (rather than merely describe or model) the traffic flow characteristics in an optimal way, i.e. to engineer the future CAV traffic flow as an efficient artificial fluid. To this end, the project will develop and deliver the necessary vehicle movement strategies for various motorway and urban road infrastructures, along with microscopic and macroscopic simulators and traffic management actions. TrafficFluid risk stems from the immense challenge of designing a new traffic system from scratch; however, we expect that the project will trigger a whole new path of international innovative research developments and testbeds that would pave the way towards a new efficient traffic system in the era of CAVs.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::948e27c52850749f66e23e4b4a9fa334&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::948e27c52850749f66e23e4b4a9fa334&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::909ab60cb8a1cc92ef25f8607323e1ec&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::909ab60cb8a1cc92ef25f8607323e1ec&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::0692544fd9951067832ce5cbb2a47325&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::0692544fd9951067832ce5cbb2a47325&type=result"></script>');
-->
</script>
In oligotrophic marine ecosystems, the natural or accidental release of crude oil marks the beginning of a season of feast for indigenous microbial consortia that have developed appropriate adaptive machinery to access and assimilate hydrocarbons. Biodegradation and bioemulsification are among the key processes by which marine microbes strongly affect the transport and fate of crude oil in the sea. Unraveling of the coupled physical and biochemical interactions between microbes and oil droplets will be a major enabler for achieving a new level of prediction of crude oil dispersion as well as for developing more efficient bioremediation techniques to combat oil spills in marine environments. The proposed research project aims at an improved understanding of the fundamental microscale mechanisms that underpin oil biodegradation with a highly innovative focus at both the single-droplet and droplet-population levels. In particular, at the single-droplet level, our focus is on the droplet-microbe interactions and the dynamics of biofilm formation over the oily substrate. Ultimately, the developing interfaces between biofilms, oil and water will be tracked and quantitatively visualized. At the droplet-population level, our focus is on the evolution of the droplet size distribution (DSD) and its impact on the average biodegradation rates for a cloud of oil microdroplets (10-60 um). The research methodology is based on a creative combination of state-of-the-art microfluidics, biochemical analyses and computational modeling. All in all, this project is expected to provide a unique and original approach to a fundamental problem in microbial ecology that has wide societal and economical repercussions. Importantly, a profound impetus will be given to the Researcher’s career via strengthening his publication record and his professional network of contacts.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::037d25e48f710ea27ce9e1b477e665bb&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::037d25e48f710ea27ce9e1b477e665bb&type=result"></script>');
-->
</script>