
We study the transverse Kähler structure of the Sasaki–Einstein space [Formula: see text]. A set of local holomorphic coordinates is introduced and a Sasakian analogue of the Kähler potential is given. We investigate deformations of the Sasaki–Einstein structure preserving the Reeb vector field, but modifying the contact form. For this kind of deformations, we consider the Sasaki–Ricci flow which converges in a suitable sense to a Sasaki–Ricci soliton. Finally, it is described the constructions of Hamiltonian holomorphic vector fields and Hamiltonian function on the [Formula: see text] manifold.
Special Riemannian manifolds (Einstein, Sasakian, etc.), Sasaki-Einstein space \(T^{1, 1}\), Kähler-Einstein manifolds, Ricci flows, Ricci flow, Global differential geometry of Hermitian and Kählerian manifolds
Special Riemannian manifolds (Einstein, Sasakian, etc.), Sasaki-Einstein space \(T^{1, 1}\), Kähler-Einstein manifolds, Ricci flows, Ricci flow, Global differential geometry of Hermitian and Kählerian manifolds
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
