Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao zbMATH Openarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2018
Data sources: zbMATH Open
International Journal of Modern Physics A
Article . 2018 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Sasaki–Ricci flow on Sasaki–Einstein space T1,1 and deformations

Sasaki-Ricci flow on Sasaki-Einstein space \(T^{1, 1}\) and deformations
Authors: Visinescu, Mihai;

Sasaki–Ricci flow on Sasaki–Einstein space T1,1 and deformations

Abstract

We study the transverse Kähler structure of the Sasaki–Einstein space [Formula: see text]. A set of local holomorphic coordinates is introduced and a Sasakian analogue of the Kähler potential is given. We investigate deformations of the Sasaki–Einstein structure preserving the Reeb vector field, but modifying the contact form. For this kind of deformations, we consider the Sasaki–Ricci flow which converges in a suitable sense to a Sasaki–Ricci soliton. Finally, it is described the constructions of Hamiltonian holomorphic vector fields and Hamiltonian function on the [Formula: see text] manifold.

Keywords

Special Riemannian manifolds (Einstein, Sasakian, etc.), Sasaki-Einstein space \(T^{1, 1}\), Kähler-Einstein manifolds, Ricci flows, Ricci flow, Global differential geometry of Hermitian and Kählerian manifolds

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!