
We propose a self-improving algorithm for computing Voronoi diagrams under a given convex distance function with constant description complexity. The $n$ input points are drawn from a hidden mixture of product distributions; we are only given an upper bound $m = o(\sqrt{n})$ on the number of distributions in the mixture, and the property that for each distribution, an input instance is drawn from it with a probability of $��(1/n)$. For any $\varepsilon \in (0,1)$, after spending $O\bigl(mn\log^{O(1)} (mn) + m^{\varepsilon} n^{1+\varepsilon}\log(mn)\bigr)$ time in a training phase, our algorithm achieves an $O\bigl(\frac{1}{\varepsilon}n\log m + \frac{1}{\varepsilon}n2^{O(\log^* n)} + \frac{1}{\varepsilon}H\bigr)$ expected running time with probability at least $1 - O(1/n)$, where $H$ is the entropy of the distribution of the Voronoi diagram output. The expectation is taken over the input distribution and the randomized decisions of the algorithm. For the Euclidean metric, the expected running time improves to $O\bigl(\frac{1}{\varepsilon}n\log m + \frac{1}{\varepsilon}H\bigr)$.
hidden mixture of product distributions, Computational Geometry (cs.CG), FOS: Computer and information sciences, Computer Science - Computational Geometry, Voronoi diagram, entropy, 004, convex distance function, ddc: ddc:004
hidden mixture of product distributions, Computational Geometry (cs.CG), FOS: Computer and information sciences, Computer Science - Computational Geometry, Voronoi diagram, entropy, 004, convex distance function, ddc: ddc:004
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
