Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DROPS - Dagstuhl Res...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2021
License: CC BY
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Self-Improving Voronoi Construction for a Hidden Mixture of Product Distributions

Authors: Cheng, Siu-Wing; Wong, Man Ting;

Self-Improving Voronoi Construction for a Hidden Mixture of Product Distributions

Abstract

We propose a self-improving algorithm for computing Voronoi diagrams under a given convex distance function with constant description complexity. The $n$ input points are drawn from a hidden mixture of product distributions; we are only given an upper bound $m = o(\sqrt{n})$ on the number of distributions in the mixture, and the property that for each distribution, an input instance is drawn from it with a probability of $��(1/n)$. For any $\varepsilon \in (0,1)$, after spending $O\bigl(mn\log^{O(1)} (mn) + m^{\varepsilon} n^{1+\varepsilon}\log(mn)\bigr)$ time in a training phase, our algorithm achieves an $O\bigl(\frac{1}{\varepsilon}n\log m + \frac{1}{\varepsilon}n2^{O(\log^* n)} + \frac{1}{\varepsilon}H\bigr)$ expected running time with probability at least $1 - O(1/n)$, where $H$ is the entropy of the distribution of the Voronoi diagram output. The expectation is taken over the input distribution and the randomized decisions of the algorithm. For the Euclidean metric, the expected running time improves to $O\bigl(\frac{1}{\varepsilon}n\log m + \frac{1}{\varepsilon}H\bigr)$.

Keywords

hidden mixture of product distributions, Computational Geometry (cs.CG), FOS: Computer and information sciences, Computer Science - Computational Geometry, Voronoi diagram, entropy, 004, convex distance function, ddc: ddc:004

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green