Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Diabetologiaarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Diabetologia
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Diabetologia
Article . 2015 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Diabetologia
Article . 2016
versions View all 2 versions
addClaim

Hepatokines: unlocking the multi-organ network in metabolic diseases

Authors: Alison, Iroz; Jean-Pierre, Couty; Catherine, Postic;

Hepatokines: unlocking the multi-organ network in metabolic diseases

Abstract

In the face of urbanisation, surplus energy intake, sedentary habits and obesity, type 2 diabetes has developed into a major health concern worldwide. Commonly overlooked in contemporary obesity research, the liver is emerging as a central regulator of whole body energy homeostasis. Liver-derived proteins known as hepatokines are now considered attractive targets for the development of novel type 2 diabetes treatments. This commentary presents examples of three leading hepatokines: fetuin-A, the first to be described and correlated with increased inflammation and insulin resistance; angiopoietin-like protein (ANGPTL)8/betatrophin, initially proposed for its action on beta cell proliferation, although this effect has recently been brought into question; and fibroblast growth factor 21 (FGF21), an insulin-sensitising hormone that is an appealing drug target because of its beneficial metabolic actions. Novel discoveries in hepatokine research may lead to promising biomarkers and treatments for metabolic disorders and type 2 diabetes. This is one of a series of commentaries under the banner '50 years forward', giving personal opinions on future perspectives in diabetes, to celebrate the 50th anniversary of Diabetologia (1965-2015).

Keywords

alpha-2-HS-Glycoprotein, Peptide Hormones, Fibroblast Growth Factors, Angiopoietin-like Proteins, Diabetes Mellitus, Type 2, Liver, Metabolic Diseases, Angiopoietin-Like Protein 8, Animals, Humans, Obesity, Insulin Resistance

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    90
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
90
Top 1%
Top 10%
Top 1%
bronze