Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Inequalit...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Inequalities and Applications
Article . 2018 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Inequalities and Applications
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2018
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2018
Data sources: zbMATH Open
https://dx.doi.org/10.60692/ag...
Other literature type . 2018
Data sources: Datacite
https://dx.doi.org/10.60692/g5...
Other literature type . 2018
Data sources: Datacite
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Lyapunov-type inequalities for mixed non-linear forced differential equations within conformable derivatives

عدم المساواة من نوع Lyapunov للمعادلات التفاضلية القسرية المختلطة غير الخطية داخل المشتقات المطابقة
Authors: Thabet Abdeljawad; Ravi P. Agarwal; Jehad Alzabut; Fahd Jarad; Abdullah Özbekler;

Lyapunov-type inequalities for mixed non-linear forced differential equations within conformable derivatives

Abstract

Nous énonçons et prouvons de nouvelles inégalités généralisées de type Lyapunov et de type Hartman pour un problème de valeur limite conforme d'ordre $ \alpha \in (1,2] $ avec des non-linéarités mixtes de la forme $ $ \bigl(\ mathbf{T}_{\ alpha} ^{a} x\bigr) (t)+r_{1}(t) \bigl\ vert x(t)\ bigr\ vert ^{\eta -1}x(t)+r_{2}(t)\bigl\vert x(t) \bigr\vert ^{ \delta -1}x(t)=g(t), \quad t\in (a,b), $$ satisfaisant les conditions limites de Dirichlet $x(a)=x(b)=0 $ , où $r_{1}$ , $r_{2}$ et g sont des fonctions intégrables à valeur réelle, et les non-linéarités satisfont les conditions $ 0<\eta <1<\delta <2 $ . De plus, les inégalités de type Lyapunov et de type Hartman sont obtenues lorsque la dérivée conformable $ \mathbf{T}_{\alpha} ^{a}$ est remplacée par une dérivée conformable séquentielle $ \mathbf{T}_{\alpha} ^{a} \circ \mathbf{T}_{\alpha }^{a}$ , $ \alpha \in (1/2,1]$ . Les fonctions potentielles $r_{1}$ , $r_{2}$ ainsi que le terme de forçage g ne nécessitent aucune restriction de signe. Les inégalités obtenues généralisent certains résultats existants dans la littérature.

Declaramos y probamos nuevas desigualdades generalizadas de tipo Lyapunov y de tipo Hartman para un problema de valor límite conformable de orden $\alpha \in (1,2]$ con no linealidades mixtas de la forma $$ \bigl(\mathbf{T}_{\alpha} ^{a} x\bigr) (t)+r_{1}(t) \bigl\vert x(t) \bigr\vert ^{\eta -1}x(t)+r_{2}(t)\bigl\vert x(t) \bigr\vert ^{ \delta -1}x(t)=g(t), \quad t\in (a,b), $$ satisfaciendo las condiciones límite de Dirichlet $x(a)=x(b)=0 $ , donde $r_{1}$ , $r_{2}$ y g son funciones integrables de valor real, y las no linealidades satisfacen las condiciones $ 0<\eta <1<\delta <2 $ . Además, las desigualdades de tipo Lyapunov y de tipo Hartman se obtienen cuando la derivada conformable $\mathbf{T}_{\alpha} ^{a}$ se reemplaza por una derivada conformable secuencial $\mathbf{T}_{\alpha }^{a} \circ \mathbf{T}_{\alpha }^{a}$ , $\alpha \in (1/2,1]$ . Las funciones potenciales $r_{1}$ , $r_{2}$, así como el término forzado g, no requieren restricciones de signo. Las desigualdades obtenidas generalizan algunos resultados existentes en la literatura.

We state and prove new generalized Lyapunov-type and Hartman-type inequalities for a conformable boundary value problem of order $\alpha \in (1,2]$ with mixed non-linearities of the form $$ \bigl(\mathbf{T}_{\alpha }^{a} x\bigr) (t)+r_{1}(t) \bigl\vert x(t) \bigr\vert ^{\eta -1}x(t)+r_{2}(t)\bigl\vert x(t) \bigr\vert ^{ \delta -1}x(t)=g(t), \quad t\in (a,b), $$ satisfying the Dirichlet boundary conditions $x(a)=x(b)=0$ , where $r_{1}$ , $r_{2}$ , and g are real-valued integrable functions, and the non-linearities satisfy the conditions $0<\eta <1<\delta <2$ . Moreover, Lyapunov-type and Hartman-type inequalities are obtained when the conformable derivative $\mathbf{T}_{\alpha }^{a}$ is replaced by a sequential conformable derivative $\mathbf{T}_{\alpha }^{a} \circ \mathbf{T}_{\alpha }^{a}$ , $\alpha \in (1/2,1]$ . The potential functions $r_{1}$ , $r_{2}$ as well as the forcing term g require no sign restrictions. The obtained inequalities generalize some existing results in the literature.

نصرح ونثبت تفاوتات جديدة معممة من نوع Lyapunov ونوع Hartman لمشكلة قيمة حدودية متوافقة من أجل $\alpha \in (1,2 ]$ مع عدم خطية مختلطة من النموذج $$\ bigl(\ mathbf{T} _{\ alpha }^{ a} x\ bigr) (t)+r _{ 1 }( t)\ bigl\ vert x(t)\ bigr\ vert ^{\ eta -1}x(t )+r _{ 2 }( t)\ bigl\ vert x (t)\ bigr\vert x(t)\ bigr\vert ^{\delta -1}x(t )=g(t), \quad t\in (a,b), $$ الوفاء بشروط حدود Dirichlet $x(a )=x(b )=0 $ , where $r _{ 1}, $r _{ 2}, and real - valueble functions, and the nonlinities the nonear t\ in (a, b)\ dela <1 $< 2. علاوة على ذلك، يتم الحصول على متباينات من نوع ليابونوف ونوع هارتمان عند استبدال المشتق المتوافق $\mathbf{T} _{\ alpha }^{ a }$ بمشتق متسلسل متوافق $\mathbf{T} _{\ alpha }^{ a}\ circ \mathbf{T} _{\ alpha }^{ a }$, $\alpha \in (1/2,1 ]$ . لا تتطلب الوظائف المحتملة $r _{ 1 }$ و $r _{ 2 }$ بالإضافة إلى مصطلح الإجبار g أي قيود على اللافتات. تعمم أوجه عدم المساواة التي تم الحصول عليها بعض النتائج الحالية في الأدبيات.

Keywords

conformable derivative, Fractional ordinary differential equations, Conformable matrix, Green’s function, Integro-Differential Equations, Theory and Applications of Fractional Differential Equations, Mathematical analysis, Quantum mechanics, Conformable derivative, Sturm-Liouville theory, Fractional derivatives and integrals, QA1-939, Differential inequalities involving functions of a single real variable, FOS: Mathematics, Lyapunov inequality, Boundary value problem, Biology, Anomalous Diffusion Modeling and Analysis, Lyapunov function, Ecology, Research, Applied Mathematics, Physics, Hartman inequality, Pure mathematics, mixed nonlinearities, Green's function, Applied mathematics, Nonlocal Partial Differential Equations and Boundary Value Problems, Boundary Value Problems, Inequality, boundary value problem, Modeling and Simulation, FOS: Biological sciences, Physical Sciences, Nonlinear system, Mixed non-linearities, Type (biology), Mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Top 10%
Top 10%
Top 10%
Green
gold