
arXiv: 1801.04148
handle: 2268/218297 , 21.11116/0000-0005-CE06-D , 10871/34227
The development of high-contrast capabilities has long been recognized as one of the top priorities for the VLTI. As of today, the VLTI routinely achieves contrasts of a few 10$^{-3}$ in the near-infrared with PIONIER (H band) and GRAVITY (K band). Nulling interferometers in the northern hemisphere and non-redundant aperture masking experiments have, however, demonstrated that contrasts of at least a few 10$^{-4}$ are within reach using specific beam combination and data acquisition techniques. In this paper, we explore the possibility to reach similar or higher contrasts on the VLTI. After reviewing the state-of-the-art in high-contrast infrared interferometry, we discuss key features that made the success of other high-contrast interferometric instruments (e.g., integrated optics, nulling, closure phase, and statistical data reduction) and address possible avenues to improve the contrast of the VLTI by at least one order of magnitude. In particular, we discuss the possibility to use integrated optics, proven in the near-infrared, in the thermal near-infrared (L and M bands, 3-5 $��$m), a sweet spot to image and characterize young extra-solar planetary systems. Finally, we address the science cases of a high-contrast VLTI imaging instrument and focus particularly on exoplanet science (young exoplanets, planet formation, and exozodiacal disks), stellar physics (fundamental parameters and multiplicity), and extragalactic astrophysics (active galactic nuclei and fundamental constants). Synergies and scientific preparation for other potential future instruments such as the Planet Formation Imager are also briefly discussed.
24 pages, 2 figures, accepted for publication in Experimental Astronomy
Aérospatiale, astronomie & astrophysique, 550, Physique, chimie, mathématiques & sciences de la terre, FOS: Physical sciences, Astronomy & Astrophysics, ULTRAFAST LASER INSCRIPTION, 530, VLTI, PFI, [PHYS] Physics [physics], INTERFEROMETRY, WAVE-GUIDES, LIMITS, Physical, chemical, mathematical & earth Sciences, 0201 Astronomical and Space Sciences, AGN, COMBINATION, Instrumentation and Methods for Astrophysics (astro-ph.IM), [PHYS]Physics [physics], Earth and Planetary Astrophysics (astro-ph.EP), ARCHITECTURE, Science & Technology, Kernel phase, Infrared interferometry, Hi-5, Active Galactic Nuclei, Integrated optics, PERFORMANCE, Exozodiacal dust, Exoplanet, Nulling, Interferometry, WATER-VAPOR, Physical Sciences, Closure phase, Space science, astronomy & astrophysics, BEAM COMBINER, [PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph], [PHYS.ASTR] Physics [physics]/Astrophysics [astro-ph], Astrophysics - Instrumentation and Methods for Astrophysics, 5101 Astronomical sciences, PLANETS, Astrophysics - Earth and Planetary Astrophysics
Aérospatiale, astronomie & astrophysique, 550, Physique, chimie, mathématiques & sciences de la terre, FOS: Physical sciences, Astronomy & Astrophysics, ULTRAFAST LASER INSCRIPTION, 530, VLTI, PFI, [PHYS] Physics [physics], INTERFEROMETRY, WAVE-GUIDES, LIMITS, Physical, chemical, mathematical & earth Sciences, 0201 Astronomical and Space Sciences, AGN, COMBINATION, Instrumentation and Methods for Astrophysics (astro-ph.IM), [PHYS]Physics [physics], Earth and Planetary Astrophysics (astro-ph.EP), ARCHITECTURE, Science & Technology, Kernel phase, Infrared interferometry, Hi-5, Active Galactic Nuclei, Integrated optics, PERFORMANCE, Exozodiacal dust, Exoplanet, Nulling, Interferometry, WATER-VAPOR, Physical Sciences, Closure phase, Space science, astronomy & astrophysics, BEAM COMBINER, [PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph], [PHYS.ASTR] Physics [physics]/Astrophysics [astro-ph], Astrophysics - Instrumentation and Methods for Astrophysics, 5101 Astronomical sciences, PLANETS, Astrophysics - Earth and Planetary Astrophysics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 37 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
