Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2010 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Arginine 469 is a pivotal residue for the Hsc70–GlcNAc-binding property

Authors: Jean-Claude Michalski; Anne-Marie Mir; Céline Guinez; Tony Lefebvre; Gérard Vergoten; Dominique Leprince; Nathalie Martin;

Arginine 469 is a pivotal residue for the Hsc70–GlcNAc-binding property

Abstract

The members of the 70kDa-heat shock proteins (HSP70) family play numerous fundamental functions in the cell such as promoting the assembly of multimeric complexes or helping the correct folding of nascent proteins to take place. In numerous previous studies we demonstrated that Hsp70 and its constitutive isoform Hsc70 are endowed of a GlcNAc-binding activity. The molecular modeling of the substrate binding domain of Hsc70 and in silico docking experiments using Ser/Thr-O-GlcNAc motifs allowed to define the potential carbohydrate-recognition region and to point out the crucial position of Arg469 as an amino-acid directly interacting with the sugar moiety. We cloned a flagged Hsc70 in a pCMV.SPORT6 vector and we showed that the mutation R469A decreased the GlcNAc-binding property of the chaperone of around 70%. This is the first work reporting the localization of the GlcNAc-binding domain of a member of the HSP70 family.

Keywords

Binding Sites, HSC70 Heat-Shock Proteins, Arginine, Acetylglucosamine, Protein Structure, Tertiary, COS Cells, Chlorocebus aethiops, Mutation, Animals, Humans, Protein Binding

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!