Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1103/physre...
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
MPG.PuRe
Article . 2022
License: CC BY
Data sources: MPG.PuRe
https://dx.doi.org/10.48550/ar...
Article . 2022
License: CC BY
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Spin contributions to the gravitational-waveform modes for spin-aligned binaries at the 3.5PN order

Authors: Quentin Henry; Sylvain Marsat; Mohammed Khalil;

Spin contributions to the gravitational-waveform modes for spin-aligned binaries at the 3.5PN order

Abstract

We complete the post-Newtonian (PN) prediction at the 3.5PN order for the spin contributions to the gravitational waveforms emitted by inspiraling compact binaries, in the case of quasi-circular, equatorial orbits, where both spins are aligned with the orbital angular momentum. Using results from the multipolar post-Minkowskian wave generation formalism, we extend previous works that derived the dynamics and gravitational-wave energy flux and phasing, by computing the full waveform decomposed in spin-weighted spherical harmonics. This new calculation requires the computation of multipolar moments of higher multipolar order, new quadratic-in-spin contributions to the hereditary tail terms entering at the 3.5PN order, as well as other non-linear interactions between moments. When specialized to the test-mass limit, our results are equivalent to those obtained in the literature for the waveform emitted by a test-mass in equatorial, circular orbits around a Kerr black hole. We also compute the factorized modes for use in effective-one-body waveform models, correcting the 2.5PN nonspinning and 3PN quadratic-in-spin terms in the (2,1) mode used in current models.

36 pages

Country
France
Keywords

wave function, orbit: circle, multipole, FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), binary: compact, angular momentum, expansion: higher-order, 530, expansion: harmonic, General Relativity and Quantum Cosmology, black hole: Kerr, gravitational radiation: emission, binary: spin, energy: flux, [PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc], gravitational radiation: energy, interaction: nonlinear

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%
Green
hybrid