Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archives of Biochemi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Archives of Biochemistry and Biophysics
Article . 2014 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dynamic profile and adipogenic role of growth differentiation factor 5 (GDF5) in the differentiation of 3T3-L1 preadipocytes

Authors: Wieland Kiess; Chengjun Sun; Zhou Pei; Feihong Luo; Yi Yang;

Dynamic profile and adipogenic role of growth differentiation factor 5 (GDF5) in the differentiation of 3T3-L1 preadipocytes

Abstract

Adipocyte differentiation is key to determining the number of adipocytes during the development of obesity. Recent studies have shown that growth differentiation factor-5 (GDF5) promotes brown adipogenesis, however its role in white adipogenesis is still uncertain. The aim of the present study was to investigate the effect of GDF5 on white adipogenesis using 3T3-L1 preadipocyte model. In the present study, GDF5 was found to be differentially regulated during adipocyte differentiation. GDF5 protein increased the differentiation of 3T3-L1 preadipocytes, especially when these cells were exposed to hormone cocktails without insulin. During adipogenesis, GDF5 enhanced the expression of genes related to adipocyte differentiation and caused cells to enter the S phase. Short-hairpin-RNA knockdown of GDF5 in 3T3-L1 cells was found to prevent adipogenesis induced by a standard hormone cocktail and to downregulate the expression of adipocyte genes and proteins, this impairment could be partly rescued by GDF5 protein. Collectively, these results suggest that GDF5 can promote progression of the cell-cycle and increase numbers of cells in S phase, GDF5 might play a critical role in 3T3-L1 preadipocyte differentiation.

Related Organizations
Keywords

Adipogenesis, Adipocytes, White, Cell Cycle, Cell Differentiation, Diet, High-Fat, Fatty Acid-Binding Proteins, Mice, Gene Expression Regulation, Growth Differentiation Factor 5, 3T3-L1 Cells, Gene Knockdown Techniques, Adipocytes, CCAAT-Enhancer-Binding Protein-alpha, Animals, PPAR alpha, Adiponectin, RNA, Messenger

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!