
In 1958 M. Katětov proved that in a normal space X , X X,X is expandable if and only if X X is collectionwise normal and countably paracompact. This result has since been used to answer many questions in various areas of general topology. In this paper Katětov’s theorem is generalized for nonnormal spaces and various characterizations of collectionwise normality are shown. Results concerning metrization, paracompactness, sum theorems, product theorems, mapping theorems and M M -spaces are then obtained as applications of these new theorems.
Higher separation axioms (completely regular, normal, perfectly or collectionwise normal, etc.)
Higher separation axioms (completely regular, normal, perfectly or collectionwise normal, etc.)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 44 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
