Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Modelling regional- and global-scale glacier volume changes over the last millennium

Authors: David Parkes; Hugues Goosse;

Modelling regional- and global-scale glacier volume changes over the last millennium

Abstract

<p>We demonstrate modelling of regional- and global-scale volume changes in glaciers over the last millennium with the Open Global Glacier Model (OGGM) - a glacier geometry and surface mass balance model in active development - using reconstructed climate data timeseries from a set of 6 GCMs. The goals are: 1) to better understand how well different longer-term (extending back to the pre-industrial period) climate datasets perform specifically in terms of their impact on glaciers; 2) to analyse the ability of OGGM to model glaciers over longer timescales while still capturing observed changes over the period of instrumental record; and 3) to determine which regions are better or worse suited to this type of modelling on large scales. A secondary goal is to understand the relative impact of precipitation and temperature - the two primary climate variables used to drive OGGM - on regional glacier volume over this time period, using synthetic climate inputs which isolate long-term trends from each variable individually. Modelling over this last millennium timescale is important due to the preponderance of available instrumental data being much more recent, with glacier models developed and calibrated using data that are mostly recorded in a period of pronounced global glacier retreat. Modelling periods that include both recent warming (and associated observed glacier retreat) and the preceding period that is without such globally coherent changes in climate provides a valuable test of glacier models, to ensure they can generate both relative stability in glacier geometry in stable climates with realistic variability and subsequent reduction in ice mass where appropriate in response to clearer recent temperature trends.</p>

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!