
doi: 10.1155/2019/7639380
Let X1,X2,X3 be Banach spaces of measurable functions in L0(R) and let m(ξ,η) be a locally integrable function in R2. We say that m∈BM(X1,X2,X3)(R) if Bm(f,g)(x)=∫R∫Rf^(ξ)g^(η)m(ξ,η)e2πi<ξ+η,x>dξdη, defined for f and g with compactly supported Fourier transform, extends to a bounded bilinear operator from X1×X2 to X3. In this paper we investigate some properties of the class BM(X1,X2,X3)(R) for general spaces which are invariant under translation, modulation, and dilation, analyzing also the particular case of r.i. Banach function spaces. We shall give some examples in this class and some procedures to generate new bilinear multipliers. We shall focus on the case m(ξ,η)=M(ξ-η) and find conditions for these classes to contain nonzero multipliers in terms of the Boyd indices for the spaces.
rearrangement invariant, Singular and oscillatory integrals (Calderón-Zygmund, etc.), (Spaces of) multilinear mappings, polynomials, bilinear operator, QA1-939, multiplier, Banach function space, Mathematics, Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
rearrangement invariant, Singular and oscillatory integrals (Calderón-Zygmund, etc.), (Spaces of) multilinear mappings, polynomials, bilinear operator, QA1-939, multiplier, Banach function space, Mathematics, Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
