Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the A...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 1993
Data sources: zbMATH Open
Proceedings of the American Mathematical Society
Article . 1993 . Peer-reviewed
Data sources: Crossref
Proceedings of the American Mathematical Society
Article . 1993 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modules and Rings Satisfying (ACCR)

Modules and rings satisfying (accr)
Authors: Lu, Chin-Pi;

Modules and Rings Satisfying (ACCR)

Abstract

A module M M over a ring R R is said to satisfy (accr) if the ascending chain of residuals of the form N : B ⊆ N : B 2 ⊆ N : B 3 ⊆ ⋯ N: B \subseteq N:{B^2} \subseteq N:{B^3} \subseteq \cdots terminates for every submodule N N and every finitely generated ideal B B of R R . A ring satisfies (accr) if it does as a module over itself. This class of rings and modules satisfies various properties of Noetherian rings and modules. For each of the following rings, we investigate a necessary and sufficient condition for the ring to satisfy (accr): polynomial rings, power series rings, valuation rings, and Prüfer domains. We also prove that if R R is a ring satisfying (accr), then every finitely generated R R -module satisfies (accr).

Keywords

Polynomial rings and ideals; rings of integer-valued polynomials, polynomial ring, Valuation rings, Commutative rings and modules of finite generation or presentation; number of generators, power series ring, valuation ring, accr, Formal power series rings, Chain conditions, finiteness conditions in commutative ring theory, Commutative Noetherian rings and modules

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Top 10%
Average
bronze
Beta
sdg_colorsSDGs:
Related to Research communities