
Let $\mathcal F$ be a general separable metric space and denote by $\mathcal D_n=\{(\bX_1,Y_1), \hdots, (\bX_n,Y_n)\}$ independent and identically distributed $\mathcal F\times \mathbb R$-valued random variables with the same distribution as a generic pair $(\bX, Y)$. In the regression function estimation problem, the goal is to estimate, for fixed $\bx \in \mathcal F$, the regression function $r(\bx)=\mathbb E[Y|\bX=\bx]$ using the data $\mathcal D_n$. Motivated by a broad range of potential applications, we propose, in the present contribution, to investigate the properties of the so-called $k_n$-nearest neighbor regression estimate. We present explicit general finite sample upper bounds, and particularize our results to important function spaces, such as reproducing kernel Hilbert spaces, Sobolev spaces or Besov spaces.
[STAT.TH] Statistics [stat]/Statistics Theory [stat.TH], [MATH.MATH-ST] Mathematics [math]/Statistics [math.ST]
[STAT.TH] Statistics [stat]/Statistics Theory [stat.TH], [MATH.MATH-ST] Mathematics [math]/Statistics [math.ST]
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
