
arXiv: hep-ph/9902442
If, as recently reported by the Super-Kamiokande collaboration, the neutrinos are massive, the heaviest one would not be stable and, though chargeless, could in particular decay into a lighter neutrino and a photon by quantum loop effects. The corresponding rate is computed in the standard model with massive Dirac neutrinos as a function of the neutrino masses and mixing angles. The lifetime of the decaying neutrino is estimated to be approximately 10^44 years for a mass 5 10^{-2} eV. If kinematically possible, the decay of a heavy neutrino into a lighter one plus an e+ e- pair occurs at tree level and its one-loop radiative corrections get enhanced by a large logarithm of the electron mass acting as an infrared cutoff. It then largely dominates the photonic mode by several orders of magnitude, corresponding to a lifetime approximately equal to 10^{-2} year for a mass 1.1 MeV.
Comment: 12 pages, LaTeX 2e (epsf) with 9 postscript figures and one logo. Some comments and references added
[PHYS.HPHE] Physics [physics]/High Energy Physics - Phenomenology [hep-ph], High Energy Physics - Phenomenology
[PHYS.HPHE] Physics [physics]/High Energy Physics - Phenomenology [hep-ph], High Energy Physics - Phenomenology
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
