Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sydney eScholarshiparrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 1 versions
addClaim

Host and microbial factors influencing the gut microbial community structure

Authors: Chew, Yi Vee;

Host and microbial factors influencing the gut microbial community structure

Abstract

Gut microbial colonization begins at birth and dynamic ecological succession occurs before establishment of a stable, resilient adult community structure. Colonization outcomes in early life have long-term effects on host health. Understanding factors governing neonatal gut community structure development and adult structure modulation will allow therapeutic manipulation of the gut community for disease prevention/treatment. Submetagenomic analysis was done to identify microbial factors potentially triggering community stability in neonate piglets. Piglet faecal microbiota was fractionated before and after key points in community development using suppression subtractive hybridization. Analysis of immunoglobulin A bound to gut microbes showed that distinct groups are bound, potentially influencing colonization outcomes. Comparisons using pyrosequencing showed that colon and cecum microbiota of mice on a standard diet were similar at higher taxonomic levels, with minor differences at finer scale reflecting spatial location. Changes in host nutrient intake were found to generically drive community shift in 2 independent mouse genotypes - low energy density (LED) diet samples showed significantly higher relative abundances of mucin-degrading Verrucomicrobiae and Bacteroidia. Ability to use host secretions as an alternative energy source is predicted to confer selective advantage under reduced host nutrient intake. To track host secretion uptake, mice were intravenously injected with 13C and 15N-labeled threonine. Isotope incorporation by bacteria was tracked with nanoscale secondary ion mass spectrometry. Greater uptake was seen in LED diet mice, indicating increased importance of host secretions to bacterial nutrition relative to host-ingested nutrients. Different populations showed differential uptake, suggesting varied ability to utilise host secretions. This is expected to influence population fitness and drive community shift under host nutrient intake limitation.

Country
Australia
Related Organizations
Keywords

Gastrointestinal microbiome, 630, dietary manipulation, comparative metagenomics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green