
Pigeonpea [Cajanus cajan (L.) Millsp.], also known as redgram, is one of the major grain legume (pulses) crops grown in the semiarid tropics (SAT) extending between 30 degrees N and 30 degrees S; it is the second most important food legume of India. It is cultivated in about 50 countries of Asia, Africa, and the Americas for a variety of uses (food, fodder, fuel wood, rearing lac insects, hedges, wind breaks, soil conservation, green manure, roofing, and so on). The constraints of enhancing its productivity include the damage caused by various fungi, bacteria, viruses, and insect pests. Conventional plant breeding methods have not been successful for the improvement of pigeonpea because of genetic variation and incompatibility among the wild varieties. Genetic engineering technology can therefore be used as an additional tool for the introduction of agronomically useful traits into established varieties. The development of plant transformation techniques has been a major breakthrough in overcoming constraints to achieve precision in genetic manipulation. The development of efficient plant regeneration protocols is a prerequisite for recombinant technology to carry out genetic transformation. This chapter describes an Agrobacterium-mediated transformation protocol for pigeonpea, a simple, efficient, and reproducible method that is applicable across diverse genotypes of pigeonpea.
580, Crops, Agricultural, 570, Genotype, Gene Transfer Techniques, Genetic Variation, Breeding, Plants, Genetically Modified, Pigeonpea, Transformation, Genetic, Cajanus, Agrobacterium tumefaciens, Genetic Engineering, Plant Diseases
580, Crops, Agricultural, 570, Genotype, Gene Transfer Techniques, Genetic Variation, Breeding, Plants, Genetically Modified, Pigeonpea, Transformation, Genetic, Cajanus, Agrobacterium tumefaciens, Genetic Engineering, Plant Diseases
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
