Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Plant alpha-amylase inhibitors and their interaction with insect alpha-amylases.

Authors: Octávio L, Franco; Daniel J, Rigden; Francislete R, Melo; Maria F, Grossi-De-Sá;

Plant alpha-amylase inhibitors and their interaction with insect alpha-amylases.

Abstract

Insect pests and pathogens (fungi, bacteria and viruses) are responsible for severe crop losses. Insects feed directly on the plant tissues, while the pathogens lead to damage or death of the plant. Plants have evolved a certain degree of resistance through the production of defence compounds, which may be aproteic, e.g. antibiotics, alkaloids, terpenes, cyanogenic glucosides or proteic, e.g. chitinases, beta-1,3-glucanases, lectins, arcelins, vicilins, systemins and enzyme inhibitors. The enzyme inhibitors impede digestion through their action on insect gut digestive alpha-amylases and proteinases, which play a key role in the digestion of plant starch and proteins. The natural defences of crop plants may be improved through the use of transgenic technology. Current research in the area focuses particularly on weevils as these are highly dependent on starch for their energy supply. Six different alpha-amylase inhibitor classes, lectin-like, knottin-like, cereal-type, Kunitz-like, gamma-purothionin-like and thaumatin-like could be used in pest control. These classes of inhibitors show remarkable structural variety leading to different modes of inhibition and different specificity profiles against diverse alpha-amylases. Specificity of inhibition is an important issue as the introduced inhibitor must not adversely affect the plant's own alpha-amylases, nor the nutritional value of the crop. Of particular interest are some bifunctional inhibitors with additional favourable properties, such as proteinase inhibitory activity or chitinase activity. The area has benefited from the recent determination of many structures of alpha-amylases, inhibitors and complexes. These structures highlight the remarkable variety in structural modes of alpha-amylase inhibition. The continuing discovery of new classes of alpha-amylase inhibitor ensures that exciting discoveries remain to be made. In this review, we summarize existing knowledge of insect alpha-amylases, plant alpha-amylase inhibitors and their interaction. Positive results recently obtained for transgenic plants and future prospects in the area are reviewed.

Keywords

Insecta, Animals, Enzyme Inhibitors, Plants, alpha-Amylases

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    399
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
399
Top 1%
Top 1%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!