
handle: 11583/2701006
The new paradigm of pharmaceutical industry is to move from batch to continuous processes in order to satisfy the stringent requirements of quality, safety and efficiency set by regulatory authorities and reduce production costs. In this perspective, freeze-drying needs to be completely rethought in order to be more integrated in the chain of production of drugs, more flexible to respond to variations in market needs and allowing the monitoring of product quality. The future of freeze-drying, as a downstream process, is therefore to move from batch to continuous. Over the past decades many ideas regarding continuous freeze-drying has been proposed, but none of them has been successfully applied. The objective of this work is to demonstrate the feasibility of an innovative concept to produce lyophilized unit-dose drugs using a continuous process. This novel strategy was demonstrated to improve both yield and vial-to-vial uniformity, giving all those advantages that are typical of continuous technology such as flexibility and elimination of process scale-up from laboratory to industrial scale.
Continuous Manufacturing; Freeze-Drying; Biopharmaceuticals
Continuous Manufacturing; Freeze-Drying; Biopharmaceuticals
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
