Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Brain-Computer Interface: comparison of two control modes to drive a virtual robot

Authors: Ron-Langevin, Ricardo; Debeyre, Aurélie; Marquet, Yvan; Lespinet-Najib, Véronique; André, Jean-Marc;

Brain-Computer Interface: comparison of two control modes to drive a virtual robot

Abstract

A Brain-Computer Interface (BCI) is a system that enables communication and control that is not based on muscular movements, but on brain activity. Some of these systems are based on discrimination of different mental tasks; usually they match the number of mental tasks to the number of control commands. Previous research at the University of Málaga (UMA-BCI) have proposed a BCI system to freely control an external device, letting the subjects choose among several navigation commands using only one active mental task (versus any other mental activity). Although the navigation paradigm proposed in this system has been proved useful for continuous movements, if the user wants to move medium or large distances, he/she needs to keep the effort of the MI task in order to keep the command. In this way, the aim of this work was to test a navigation paradigm based on the brain-switch mode for ‘forward’ command. In this mode, the subjects used the mental task to switch their state on /off: they stopped if they were moving forward and vice versa. Initially, twelve healthy and untrained subjects participated in this study, but due to a lack of control in previous session, only four subjects participated in the experiment, in which they had to control a virtual robot using two paradigms: one based on continuous mode and another based on switch mode. Preliminary results show that both paradigms can be used to navigate through virtual environments, although with the first one the times needed to complete a path were notably lower.

Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.

Country
Spain
Keywords

Interfaces de ordenadores, switch mode, virtual robot, Virtual Environment, Interacción hombre-ordenador, Brain Computer Interface, motor imagery (IM), [SHS] Humanities and Social Sciences, [SCCO] Cognitive science, [INFO] Computer Science [cs], Brain-Computer Interface (BCI)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green