Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DIGITAL.CSIC
Article . 2022 . Peer-reviewed
Data sources: DIGITAL.CSIC
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Experimental and Applied Acarology
Article . 2021 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Acarofauna present in organic strawberry fields and associated weed species in southern Brazil

Authors: Emily Silva Araujo; Alessandra Benatto; José Manuel Mirás-Avalos; Thais Rogoski; Suelen Ferreira Oelke; Matheus Schussler; Noeli Juarez Ferla; +2 Authors

Acarofauna present in organic strawberry fields and associated weed species in southern Brazil

Abstract

The presence of weeds in the margins of strawberry crops can enhance populations of predatory mites as a measure to support conservation biological control. The aims of this study were (i) to assess the composition of the acarofauna associated with strawberries and the accompanying herbaceous plants in an organic farming system, and (ii) to evaluate the possible relationships between phytophagous and predatory mites occurring in this system. Strawberry leaves and whole plants of weeds were sampled biweekly from August 2014 to February 2015 in Lapa (Paraná, Brazil). In total, 23 weed species belonging to 10 families were identified; 3768 mite individuals (from 15 families and 4 suborders) were recovered, 77% on strawberries and 23% on weeds. Abundance of predatory mites on weeds was greater than on strawberry cultivars. On strawberries, the most abundant family was Tetranychidae (84%) followed by Phytoseiidae (11.6%). In total, 16 predatory mite species from the Phytoseiidae family were identified, 13 of them occurring on strawberry leaflets. Typholodromalus aripo, Neoseiulus californicus and Typhlodromips mangleae were the most abundant mite species on strawberry leaves. On weeds, most individuals were predatory mites (59%), whereas phytophagous mites represented 17.2%. The most abundant family was Phytoseiidae (36.4%). On weeds, the phytoseiid mite T. aripo was the most abundant species, representing 34.7%. Besides being found on strawberry leaflets, T. aripo was associated with 15 weed species. Among the weeds, Bidens pilosa showed the highest values of the Shannon index (1.97), Margalef index (3.04), and Pielou's evenness index (0.95). This study emphasizes the importance of surrounding weeds as a shelter for beneficial mitefauna in strawberry fields, likely contributing to enhance conservation biological control.

Country
Spain
Keywords

Mites, Tetranychus urticae, Fragaria, Typholodromalus aripo, Bidens pilosa, Predatory Behavior, Typhlodromips mangleae, Animals, Pest Control, Biological, Tetranychidae, Conservation biocontrol, Brazil, Fragaria x ananassa

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 96
    download downloads 201
  • 96
    views
    201
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
4
Top 10%
Average
Average
96
201
Green