Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DIGITAL.CSICarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DIGITAL.CSIC
Article . 2019 . Peer-reviewed
Data sources: DIGITAL.CSIC
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-INSU
Article . 2017
Data sources: HAL-INSU
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL INRAE
Article . 2017
Data sources: HAL INRAE
Journal of The Electrochemical Society
Article . 2017 . Peer-reviewed
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Electrophoretic Deposition of Ni(OH)2Nanoplatelets Modified by Polyelectrolyte Multilayers: Study of the Coatings Formation in a Laminar Flow Cell

Authors: Gonzalez, Z.; Filiatre, C.; Buron, C.; Sanchez-Herencia, A.; Ferrari, B.;

Electrophoretic Deposition of Ni(OH)2Nanoplatelets Modified by Polyelectrolyte Multilayers: Study of the Coatings Formation in a Laminar Flow Cell

Abstract

The electrophoretic deposition (EPD) of semiconductor ceramic nanoplatelets functionalized by self-assembled polyelectrolyte multilayers has been investigated. The influence of particle surface modification in the packing of the nanostructured film on a nickel cathode has been determined for different electrical conditions. A polymer multilayer shell has been fashioned onto β-Ni(OH) nanoplatelets surfaces by alternating the adsorption of Polyethylenimine (PEI) and Polyacrylic Acid (PAA). Two different core-shell systems with 1, 3 and 5 layers were considered using either linear or branched PEI as polycation to alternate with the anionic polyelectrolyte (PAA). The Layer by Layer, (LbL) build-up of polyanions and polycations was characterized both in terms of particle zeta potential measurements and in situ measurements of polyelectrolyte adsorption onto a flat substrate by optical fixed-angle reflectometry. The amount of polyelectrolyte required to build up each layer was determined from zeta potential measurements. Both data allowed the design of the in situ formation of the core-shell nanostructures as well as the shaping of the particulated coatings following the one-pot procedure, avoiding intermediate steps of drying or washing. The movement of the core-shell particles, their aggregation state and the coating growth during electrophoretic deposition were studied in situ using a laminar flow cell coupled to an optical microscope. The particle flux was calculated from the surface coverage of the cathode and compared to the values estimated by the EPD electrokinetic model, demonstrating the strong impact of the steric interactions between the core-shell particles in both the deposition rate of nanoplatelets and the coating morphology.

The authors acknowledge the support to the European Ceramic Society through JECS 520 Trust funding. Also they acknowledge the support to the project S2013/MIT-2862 and 521 MAT2015-70780-C4-1.

Peer Reviewed

Countries
Spain, France
Keywords

Optical fixed-angle reflectometry, Layer-by-layer adsorption, Polyelectrolyte Multilayer, Electrophoretic Deposition, [PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph], 540, [PHYS.ASTR] Physics [physics]/Astrophysics [astro-ph], Nickel Hydroxide

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 58
    download downloads 133
  • 58
    views
    133
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
6
Average
Average
Average
58
133
Green
bronze