
It is widely believed that the continued fraction expansion of every irrational algebraic number $��$ either is eventually periodic (and we know that this is the case if and only if $��$ is a quadratic irrational), or it contains arbitrarily large partial quotients. Apparently, this question was first considered by Khintchine. A preliminary step towards its resolution consists in providing explicit examples of transcendental continued fractions. The main purpose of the present work is to present new families of transcendental continued fractions with bounded partial quotients. Our results are derived thanks to new combinatorial transcendence criteria recently obtained by Adamczewski and Bugeaud.
11J81, 11J70, 68R15, Mathematics - Number Theory, FOS: Mathematics, Number Theory (math.NT)
11J81, 11J70, 68R15, Mathematics - Number Theory, FOS: Mathematics, Number Theory (math.NT)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
