Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://www.intechop...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://www.intechopen.com/cit...
Part of book or chapter of book
License: CC BY
Data sources: UnpayWall
https://doi.org/10.5772/67460...
Part of book or chapter of book . 2017 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.60692/n4...
Other literature type . 2017
Data sources: Datacite
https://dx.doi.org/10.60692/xx...
Other literature type . 2017
Data sources: Datacite
versions View all 3 versions
addClaim

Mechatronic Design of a Lower Limb Exoskeleton

تصميم الميكاترونيك لهيكل خارجي للطرف السفلي
Authors: Luis I. Minchala; Fabián Astudillo‐Salinas; Kenneth Palacio‐Baus; Andrés Vazquez‐Rodas;

Mechatronic Design of a Lower Limb Exoskeleton

Abstract

Ce chapitre présente une conception mécatronique de l'exosquelette des membres inférieurs. La conception vise à être utilisée comme un dispositif de soutien à la marche axé sur les patients qui souffrent d'une paralysie partielle du bas du corps due à des blessures à la colonne vertébrale ou causée par un accident vasculaire cérébral. Premièrement, la conception mécanique est présentée et les résultats sont validés par des simulations dynamiques effectuées dans Autodesk Inventor et Matlab. Deuxièmement, une conception de réseau de communication est proposée afin d'établir une liaison de données sécurisée et rapide entre les capteurs, les actionneurs et les microprocesseurs. Enfin, l'interaction du système patient-exosquelette est présentée et détaillée. La génération de mouvements est effectuée au moyen de techniques de traitement du signal numérique appliquées aux signaux d'électromyographie (EMG) et d'électrocardiographie (EEG). Une telle conception de système d'interaction est testée et évaluée dans Matlab dont les résultats sont présentés et expliqués. Une proposition de contrôle de supervision en temps réel est également présentée dans le cadre de l'intégration de chaque composant de l'exosquelette.

Este capítulo presenta un diseño mecatrónico del exoesqueleto de la extremidad inferior. El diseño tiene como objetivo ser utilizado como un dispositivo de soporte para caminar enfocado en pacientes que sufren parálisis parcial de la parte inferior del cuerpo debido a lesiones de la columna vertebral o causadas por un accidente cerebrovascular. En primer lugar, se presenta el diseño mecánico y los resultados se validan a través de simulaciones dinámicas realizadas en Autodesk Inventor y MATLAB. En segundo lugar, se propone un diseño de red de comunicación para establecer un enlace de datos seguro y rápido entre sensores, actuadores y microprocesadores. Por último, se presenta y detalla la interacción del sistema paciente-exoesqueleto. La generación de movimientos se realiza mediante técnicas de procesamiento de señales digitales aplicadas a señales de electromiografía (EMG) y electrocardiografía (EEG). Dicho diseño del sistema de interacción se prueba y evalúa en MATLAB cuyos resultados se presentan y explican. También se presenta una propuesta de control de supervisión en tiempo real como parte de la integración de cada componente del exoesqueleto.

This chapter presents a lower limb exoskeleton mechatronic design.The design aims to be used as a walking support device focused on patients who suffer of partial lower body paralysis due to spine injuries or caused by a stroke.First, the mechanical design is presented and the results are validated through dynamical simulations performed in Autodesk Inventor and MATLAB.Second, a communication network design is proposed in order to establish a secure and fast data link between sensors, actuators, and microprocessors.Finally, patient-exoskeleton system interaction is presented and detailed.Movement generation is performed by means of digital signal processing techniques applied to electromyography (EMG) and electrocardiography (EEG) signals.Such interaction system design is tested and evaluated in MATLAB whose results are presented and explained.A proposal of real-time supervisory control is also presented as a part of the integration of every component of the exoskeleton.

يقدم هذا الفصل تصميمًا ميكانيكيًا خارجيًا للطرف السفلي. يهدف التصميم إلى استخدامه كجهاز دعم للمشي يركز على المرضى الذين يعانون من شلل جزئي في الجزء السفلي من الجسم بسبب إصابات العمود الفقري أو بسبب السكتة الدماغية. أولاً، يتم تقديم التصميم الميكانيكي والتحقق من صحة النتائج من خلال عمليات المحاكاة الديناميكية التي يتم إجراؤها في Autodesk Inventor و MATLAB. ثانيًا، يتم اقتراح تصميم شبكة اتصالات من أجل إنشاء رابط بيانات آمن وسريع بين أجهزة الاستشعار والمشغلات والمعالجات الدقيقة. أخيرًا، يتم تقديم تفاعل نظام الهيكل الخارجي للمريض وتفصيله. يتم تنفيذ توليد الحركة عن طريق تقنيات معالجة الإشارات الرقمية المطبقة على إشارات تخطيط كهربية العضل (EMG) وتخطيط كهربية القلب (EEG). يتم اختبار تصميم نظام التفاعل هذا وتقييمه في MATLAB الذي يتم تقديم وشرح نتائجه. يتم أيضًا تقديم اقتراح للتحكم الإشرافي في الوقت الفعلي كجزء من تكامل كل مكون من الهيكل الخارجي.

Related Organizations
Keywords

MATLAB, Artificial intelligence, Sensory Feedback, Control engineering, Mechanical Circulatory Support Systems, Biomedical Engineering, FOS: Medical engineering, Mechatronics, Computer science, Musculoskeletal Modeling, Exoskeleton, Exoskeletons, Operating system, Engineering, Analysis of Electromyography Signal Processing, Actuator, Physical Sciences, Lower Limb, Lower Limb Exoskeleton Robotics, Simulation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Top 10%
Average
hybrid