
doi: 10.5772/33061
handle: 11583/2495527
The term mycotoxin was used for the first time in 1961 in the aftermath of a veterinary crisis in England, during which thousands of animals died. The disease was linked to a peanut meal, incorporated in the diet, contaminated with a toxin produced by the filamentous fungus Aspergillus flavus (Bennet & Klich, 2003; Richard, 2007). In general, mycotoxins are low-molecular-weight compounds that are synthetized during secondary metabolism by filamentous fungi; their chemical structure may range from simple C4 compounds to complex substances (Paterson & Lima, 2010). Mycotoxins are natural contaminants in raw materials, food and feeds. Mould species that produce mycotoxins are extremely common, and they can grow on a wide range of substrates under a wide range of environmental conditions; they occur in agricultural products all around the world (Bennet & Klich, 2003). Many mycotoxins may be toxic to vertebrates and other animal groups and, in low concentrations, some of them can cause autoimmune illnesses, and have allergenic properties, while others are teratogenic, carcinogenic, and mutagenic (Bennet & Klich, 2003; Council for Agricultural Science and Technology [CAST], 2003). Apparently, mycotoxins have no biochemical significance on fungal growth; they may have developed to provide a defense system against insects, microorganisms, nematodes, animals and humans (Etzel, 2002). Exposure to mycotoxins may occur through ingestion, inhalation, and dermal contact, and it is almost always accidental. Most cases of mycotoxicoses (animals and humans) result from eating contaminated food. Human exposure can be direct via cereals or indirect via animal products (e.g. meat, milk and eggs) (CAST, 2003). Most mycotoxins are relatively heat-stable within the conventional food processing temperature range (80–121°C), therefore so little or no destruction occurs under normal cooking conditions, such as boiling and frying, or even following pasteurization (Milicevic et al., 2010). The stability of mycotoxins during food processing has been reviewed in the work by Bullerman & Bianchini (2007). In general, the application of a food process reduces mycotoxin concentrations significantly, but does not eliminate them completely. The food processes that have been examined include physical treatments (cleaning and milling) and thermal processing (e.g. cooking, baking, frying, roasting and extrusion). The different treatments have various effects on mycotoxins, and those that utilize the highest temperatures have the greatest effects: roasting or cooking at high temperatures (above 150 °C) appear to reduce mycotoxin concentrations significantly (Bullerman & Bianchini, 2007).
Mycotoxin; fungi; health; food
Mycotoxin; fungi; health; food
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 19 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
