Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Statistica Sinicaarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Statistica Sinica
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2022
Data sources: zbMATH Open
Statistica Sinica
Article . 2022 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

Metric Learning via Cross-Validation

Metric learning via cross-validation
Authors: Dai, Linlin; Chen, Kani; Li, Gang; Lin, Yuanyuan;

Metric Learning via Cross-Validation

Abstract

Summary: In this paper, we propose a \textit{cross-validation metric learning} approach to learn a distance metric for dimension reduction in the multiple-index model. We minimize a leave-one-out cross-validation-type loss function, where the unknown link function is approximated by a metric-based kernel-smoothing function. To the best of our knowledge, we are the first to reduce the dimensionality of multiple-index models in a framework of metric learning. The resulting metric contains crucial information on both the central mean subspace and the optimal kernel-smoothing bandwidth. Under weak assumptions on the design of the predictors, we establish asymptotic theories for the consistency and convergence rate of the estimated directions, as well as the optimal rate of the bandwidth. Furthermore, we develop a novel estimation procedure to determine the structural dimension of the central mean subspace. The proposed approach is relatively easy to implement numerically by employing fast gradient-based algorithms. Various empirical studies illustrate its advantages over other existing methods.

Country
China (People's Republic of)
Related Organizations
Keywords

Multiple-index model, Estimation in multivariate analysis, sufficient dimension reduction, Nonparametric regression, Sufficient dimension reduction, Density estimation, nonparametric regression, Asymptotic properties of nonparametric inference, multiple-index model, Nonparametric regression and quantile regression

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
bronze