Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ZENODO
Article . 2020
License: CC BY
Data sources: Datacite
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ZENODO
Article . 2020
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optical gain of lead halide perovskites measured via the variable stripe length method: what we can learn and how to avoid pitfalls

Authors: Alvarado-Leaños, Ada Lili; Deniele Cortecchia; Folpini, Giulia; Petrozza, Annamaria;

Optical gain of lead halide perovskites measured via the variable stripe length method: what we can learn and how to avoid pitfalls

Abstract

In the search for novel photonic materials, the recent focus on Metal halide perovskites (MHPs) has revealed their promise to become groundbreaking low-threshold, tunable coherent light sources. An accurate determination of the optical gain coefficient (g) would help to screen for materials and design highly efficient perovskite lasers. Nevertheless, contradictory numbers are continuously reported, making this figure of merit unreliable. To address this issue, the present work outlines a meticulous analysis to retrieve g of MAPbI3, based on the variable stripe-length (VSL) method. This method is often preferred due to its apparent simplicity; however, one can arrive at incorrect conclusions without the adequate considerations. Therefore, here the experimental implementation and numerical treatment of the data are thoroughly discussed to establish a robust VSL methodology. The obtained power dependence and spectral gain evolution point to the role of electron-hole bimolecular recombination dictating the stimulated emission properties of MAPbI3, with a behavior resembling that of bulk GaAs. Beyond providing further knowledge on the procedure to carry out pertinent VSL measurements, this work also outlines a meticulous methodology to study the underlying photophysical gain properties of MHPs and consequently, to obtain a deeper understanding of the lasing properties of these complex materials.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 8
    download downloads 4
  • 8
    views
    4
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
8
4
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!