
We present here an algorithm to simulate the motion of rigid bodies subject to a non–overlapping constraint, and which tend to aggregate when they get close to each other. The motion is induced by external forces. Two types of forces are considered here: drift force induced by the action of a surrounding fluid whose motion is prescribed, and stochastic forces modelling random shocks of molecules on the surface of the bodies. The numerical approach fits into the general framework of granular flow modelling.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
