
Summary: The Church-Turing thesis says that a digital computer is a universal computational device; that is, it is able to simulate any physically realizable computational device. It has generally been believed that this simulation can be made efficient so that it entails at most a polynomial increase in computation time. This may not be true if quantum mechanics is taken into consideration. A quantum computer is a hypothetical machine based on quantum mechanics. We explain quantum computing, and give an algorithm for prime factorization on a quantum computer that runs asymptotically much faster than the best known algorithm on a digital computer. It is not clear whether it will ever be possible to build large-scale quantum computers. One of the main difficulties is in manipulating coherent quantum states without introducing errors or losing coherence. We discuss quantum error-correcting codes and fault-tolerant quantum computing, which can guarantee highly reliable quantum computation, given only moderately reliable quantum computing hardware.
Foundations, quantum information and its processing, quantum axioms, and philosophy, computational complexity, prime factorization, Models of computation (Turing machines, etc.), Factorization
Foundations, quantum information and its processing, quantum axioms, and philosophy, computational complexity, prime factorization, Models of computation (Turing machines, etc.), Factorization
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 97 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
