
Standard data mining techniques no longer adequately represent the complexity of the world. So, a new paradigm is necessary. Symbolic Data Analysis is a new type of data analysis that allows us to represent the complexity of reality, maintaining the internal variation and structure developed by Diday (2003). This new paradigm is based on the concept of symbolic object, which is a mathematical model of a concept. In this article the authors are going to present the fundamentals of the symbolic data analysis paradigm and the symbolic object concept. Theoretical aspects and examples allow the authors to understand the SDA paradigm as a tool for mining complex data.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
