Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Remote Sensingarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Remote Sensing
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Remote Sensing
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Focus on the Crop Not the Weed: Canola Identification for Precision Weed Management Using Deep Learning

Authors: Michael Mckay; Monica F. Danilevicz; Michael B. Ashworth; Roberto Lujan Rocha; Shriprabha R. Upadhyaya; Mohammed Bennamoun; David Edwards;

Focus on the Crop Not the Weed: Canola Identification for Precision Weed Management Using Deep Learning

Abstract

Weeds pose a significant threat to agricultural production, leading to substantial yield losses and increased herbicide usage, with severe economic and environmental implications. This paper uses deep learning to explore a novel approach via targeted segmentation mapping of crop plants rather than weeds, focusing on canola (Brassica napus) as the target crop. Multiple deep learning architectures (ResNet-18, ResNet-34, and VGG-16) were trained for the pixel-wise segmentation of canola plants in the presence of other plant species, assuming all non-canola plants are weeds. Three distinct datasets (T1_miling, T2_miling, and YC) containing 3799 images of canola plants in varying field conditions alongside other plant species were collected with handheld devices at 1.5 m. The top performing model, ResNet-34, achieved an average precision of 0.84, a recall of 0.87, a Jaccard index (IoU) of 0.77, and a Macro F1 score of 0.85, with some variations between datasets. This approach offers increased feature variety for model learning, making it applicable to the identification of a wide range of weed species growing among canola plants, without the need for separate weed datasets. Furthermore, it highlights the importance of accounting for the growth stage and positioning of plants in field conditions when developing weed detection models. The study contributes to the growing field of precision agriculture and offers a promising alternative strategy for weed detection in diverse field environments, with implications for the development of innovative weed control techniques.

Related Organizations
Keywords

precision agriculture, Science, Q, deep learning, canola, <i>Brassica napus</i>, herbicide, image segmentation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
gold