Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Remote Sensingarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Remote Sensing
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Remote Sensing
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Remote Sensing
Article . 2020
Data sources: DOAJ
DBLP
Article
Data sources: DBLP
versions View all 4 versions
addClaim

The Polarimetric Sensitivity of SMAP-Reflectometry Signals to Crop Growth in the U.S. Corn Belt

Authors: Nereida Rodriguez-Alvarez; Sidharth Misra; Mary Morris;

The Polarimetric Sensitivity of SMAP-Reflectometry Signals to Crop Growth in the U.S. Corn Belt

Abstract

Crop growth is an important parameter to monitor in order to obtain accurate remotely sensed estimates of soil moisture, as well as assessments of crop health, productivity, and quality commonly used in the agricultural industry. The Soil Moisture Active Passive (SMAP) mission has been collecting Global Positioning System (GPS) signals as they reflect off the Earth’s surface since August 2015. The L-band dual-polarization reflection measurements enable studies of the evolution of geophysical parameters during seasonal transitions. In this paper, we examine the sensitivity of SMAP-reflectometry signals to agricultural crop growth related characteristics: crop type, vegetation water content (VWC), crop height, and vegetation opacity (VOP). The study presented here focuses on the United States “Corn Belt,” where an extensive area is planted every year with mostly corn, soybean, and wheat. We explore the potential to generate regularly an alternate source of crop growth information independent of the data currently used in the soil moisture (SM) products developed with the SMAP mission. Our analysis explores the variability of the polarimetric ratio (PR), computed from the peak signals at V- and H-polarization, during the United States Corn Belt crop growing season in 2017. The approach facilitates the understanding of the evolution of the observed surfaces from bare soil to peak growth and the maturation of the crops until harvesting. We investigate the impact of SM on PR for low roughness scenes with low variability and considering each crop type independently. We analyze the sensitivity of PR to the selected crop height, VWC, VOP, and Normalized Differential Vegetation Index (NDVI) reference datasets. Finally, we discuss a possible path towards a retrieval algorithm based on Global Navigation Satellite System-Reflectometry (GNSS-R) measurements that could be used in combination with passive SMAP soil moisture algorithms to correct simultaneously for the VWC and SM effects on the electromagnetic signals.

Keywords

SMAP-R, GNSS-R, crop health, crop height, Science, Q, gnss-r, vegetation opacity, smap-r, soil moisture, vwc, VWC, crop type, crop productivity, agriculture

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Top 10%
Top 10%
gold