
We present an analysis of the Dirac equation when the spin symmetry is changed from SU(2) to the quaternion group, Q8, achieved by multiplying one of the gamma matrices by the imaginary number, i. The reason for doing this is to introduce a bivector into the spin algebra, which complexifies the Dirac field. It then separates into two distinct and complementary spaces: one describing polarization and the other coherence. The former describes a 2D structured spin, and the latter its helicity, generated by a unit quaternion.
quaternionic model, FOS: Physical sciences, dirac field, quantum theory, Physics - General Physics, General Physics (physics.gen-ph), dirac equation, QA1-939, theoretical physicists, quantum field theory, Mathematics
quaternionic model, FOS: Physical sciences, dirac field, quantum theory, Physics - General Physics, General Physics (physics.gen-ph), dirac equation, QA1-939, theoretical physicists, quantum field theory, Mathematics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
