Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2017 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2017
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multi-Objective Planning Techniques in Distribution Networks: A Composite Review

Authors: Syed Kazmi; Muhammad Shahzad; Dong Shin;

Multi-Objective Planning Techniques in Distribution Networks: A Composite Review

Abstract

Distribution networks (DNWs) are facing numerous challenges, notably growing load demands, environmental concerns, operational constraints and expansion limitations with the current infrastructure. These challenges serve as a motivation factor for various distribution network planning (DP) strategies, such as timely addressing load growth aiming at prominent objectives such as reliability, power quality, economic viability, system stability and deferring costly reinforcements. The continuous transformation of passive to active distribution networks (ADN) needs to consider choices, primarily distributed generation (DG), network topology change, installation of new protection devices and key enablers as planning options in addition to traditional grid reinforcements. Since modern DP (MDP) in deregulated market environments includes multiple stakeholders, primarily owners, regulators, operators and consumers, one solution fit for all planning scenarios may not satisfy all these stakeholders. Hence, this paper presents a review of several planning techniques (PTs) based on mult-objective optimizations (MOOs) in DNWs, aiming at better trade-off solutions among conflicting objectives and satisfying multiple stakeholders. The PTs in the paper spread across four distinct planning classifications including DG units as an alternative to costly reinforcements, capacitors and power electronic devices for ensuring power quality aspects, grid reinforcements, expansions, and upgrades as a separate category and network topology alteration and reconfiguration as a viable planning option. Several research works associated with multi-objective planning techniques (MOPT) have been reviewed with relevant models, methods and achieved objectives, abiding with system constraints. The paper also provides a composite review of current research accounts and interdependence of associated components in the respective classifications. The potential future planning areas, aiming at the multi-objective-based frameworks, are also presented in this paper.

Related Organizations
Keywords

Technology, planning techniques (PT), T, multi-objective optimization (MOO), component reinforcement and up gradation (CRU), multi-criteria decision analysis (MCDA), distribution network planning (DP), network (distribution) topology change and reconfiguration (NTR), volt-ampere reactive power (VAR) compensation and power quality (VPQ), distributed generation placement (DGP), multiple objective planning (MOP), distributed generation (DG), future distribution networks (FDNs), multi-objective planning techniques (MOPTs), active distribution network (ADN), distributed energy resources (DERs)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Top 10%
Top 10%
Top 10%
gold