
doi: 10.3390/d2040610
Honey is produced by honeybees from nectar and from secretions of living plants. It reflects the honeybees’ diet and the local plant communities. Honey also shows different plant compositions in different geographical locations. We propose a new method for studying the plant diversity and the geographical origin of honey using a DNA barcoding approach that combines universal primers and massive parallel pyrosequencing. To test this method we use two commercial honeys, one from a regional origin and one composed of a worldwide mix of different honeys. We demonstrate that the method proposed here is fast, simple to implement, more robust than classical methods, and therefore suitable for analyzing plant diversity in honey.
QH301-705.5, DNA barcoding, honey, Biology (General), trnL approach, DNA barcoding; <em><i>trn</i></em>L approach; honey; plant diversity, plant diversity
QH301-705.5, DNA barcoding, honey, Biology (General), trnL approach, DNA barcoding; <em><i>trn</i></em>L approach; honey; plant diversity, plant diversity
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 92 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
