Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Poultry Sciencearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Poultry Science
Article . 2015 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Poultry Science
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Poultry Science
Article . 2015
versions View all 2 versions
addClaim

Ultrasonic eggshell thickness measurement for selection of layers

Authors: Lucyna, Kibala; Iwona, Rozempolska-Rucinska; Kornel, Kasperek; Grzegorz, Zieba; Marek, Lukaszewicz;

Ultrasonic eggshell thickness measurement for selection of layers

Abstract

This study aimed to develop a methodology for using ultrasonic technology (USG) to record eggshell thickness for selection of layers. Genetic correlations between eggshell strength and its thickness have been reported to be around 0.8, making shell thickness a selection index candidate element. Applying ultrasonic devices to measure shell thickness leaves an egg intact for further handling. In this study, eggs from 2 purebred populations of Rhode Island White (RIW) and Rhode Island Red (RIR) hens were collected on a single day in the 33rd week of the farm laying calendar from 2,414 RIR and 4,525 RIW hens. Beginning from the large end of the egg, measurements were taken at 5 latitudes: 0º (USG0), 45º (USG45), 90º (USG90), 135º (USG135), and 180º (USG180). To estimate the repeatability of readings, measurements were repeated at each parallel on 3 meridians. Electronic micrometer measurement ( EMM: ) were taken with an electronic micrometer predominantly at the wider end of eggs from 2,397 RIR and 4,447 RIW hens. A multiple-trait statistical model fit the fixed effect of year-of-hatch × hatch-within-year, and random effects due to repeated measurements (except EMM) and an animal's additive genetic component. The shell was thinnest in the region where chicks break it upon hatching (USG0, USG45). Heritabilities of shell thickness in different regions of the shell ranged from 0.09 to 0.19 (EMM) in RIW and from 0.12 to 0.23 (EMM) in RIR and were highest for USG45 and USG0. Because the measurement repeatabilities were all above 0.90, our recommendation for balancing egg strength against hatching ease is to take a single measurement of USG45. Due to high positive genetic correlations between shell thickness in different regions of the shell its thickness in the pointed end region will be modified accordingly, in response to selection for USG45.

Related Organizations
Keywords

Egg Shell, Animals, Female, Animal Husbandry, Breeding, Chickens, Models, Biological, Ultrasonography

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Top 10%
Top 10%
Top 10%
gold